
Capitolo 11

RAPPRESENTAZIONE DEI
SISTEMI DISCRETI POSITIVI

Chiamiamo “positivi” i sistemi dinamici nei quali tutte le variabili di stato, cos̀ı come
quelle di ingresso e di uscita, se presenti, possono assumere soltanto valori non negativi.
Situazioni nelle quali le grandezze in gioco hanno significato esclusivamente quando ad
esse si attribuiscano valori non negativi sono piuttosto frequenti, in ambito tecnologico
(pressione, concentrazione, massa,. . . ), biologico (numero di animali o di specie in un
particolare ambiente, frequenza di ricombinazione,. . . ), demografico (numero di individui
in una classe di età, densità di una popolazione in una data regione, . . . ), economico
(livello delle merci in un magazzino, quantità di beni prodotti, . . . ), etc. Il vincolo che
in un sistema positivo tutte le grandezze in gioco siano non negative e che la legge di
aggiornamento debba conservare tale proprietà si traduce, come è naturale aspettarsi, in
condizioni piuttosto stringenti sulla natura delle equazioni di stato.
In questo capitolo ci soffermeremo soprattutto sui sistemi lineari discreti in evoluzione
libera. I caratteri peculiari di cui sono dotate le matrici quadrate non negative impiegate
per rappresentarne la dinamica consentono di trarre interessanti conclusioni sull’evoluzione
di stato e, nel capitolo 13, di affrontare lo studio delle catene di Markov, che dei sistemi
positivi costituiscono un esempio paradigmatico.
Premettiamo subito che una parte considerevole dell’analisi del comportamento in evolu-
zione libera si può condurre sul “grafo di influenza” o, equivalentemente, sulla immagine
booleana del sistema, ricorrendo ad argomenti di natura combinatoria che prescindono
dagli specifici valori degli elementi nelle matrici e nei vettori e tengono conto soltanto
dal fatto che tali valori siano o non siano diversi da zero. Questa peculiarità vale non
solo per la dinamica libera dello stato, ma anche per le proprietà di raggiungibilità e di
osservabilità, che costituiranno l’argomento del capitolo 12.

11.1 Rappresentazione dei sistemi lineari discreti positivi

Se consideriamo le equazioni di un sistema lineare discreto

x(t+ 1) = Fx(t) +Gu(t)
y(t) = Hx(t) +Du(t) (11.1)
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ed imponiamo che, per ogni ingresso u(0) e per ogni stato iniziale x(0) a componenti non
negative, l’uscita y(0) e lo stato x(1) abbiano tutte componenti non negative, è immediato
verificare che le matrici F,G,H e D non possono avere alcun elemento negativo.
Infatti, scegliendo u(0) = 0 ed x(0) = ei (l’i-esimo vettore della base canonica), lo stato
x(1) e l’uscita y(0) sono costituiti dalla i-esima colonna di F e dalla i-esima colonna di H,
che pertanto non possono contenere elementi negativi. Scegliendo u(0) = ei ed x(0) = 0,
lo stato x(1) e l’uscita y(0) sono costituiti dalla i-esima colonna di G e dalla i-esima
colonna di D, che a loro volta non possono contenere nessun elemento negativo.

Viceversa, è ovvio che se F,G,H,D hanno tutti gli elementi non negativi, il sistema
(11.1) avrà stati e uscite non negativi per ogni t ≥ 0, quando x(0) sia non negativo e per
ogni t ≥ 0 siano non negativi i vettori di ingresso u(t).

11.1.1 Definizioni e notazioni per le matrici non negative

Nel seguito ricorreremo ad una nomenclatura apposita per le matrici e, in particolare, per
i vettori i cui elementi siano non negativi. Se M = [mij ] ∈ Rp×m

+ , porremo

• M >> 0 se mij > 0 per ogni i, j: in questo caso diremo1 che la matrice è “stretta-
mente positiva”;

• M > 0 se mij ≥ 0 per ogni i, j e almeno un elemento della matrice è positivo: in
questo caso la matrice M è “strettamente non negativa” (o “positiva”);

• M ≥ 0 se mij ≥ 0 per ogni i, j, senza escludere il caso che possa aversi M = 0: la
matrice M è in questo caso “non negativa”.

Se M ed N sono matrici (in particolare vettori) di eguali dimensioni, porremo M >>
N , oppure M > N , oppure M ≥ N , a seconda che M − N sia strettamente positiva,
strettamente non negativa o non negativa.
Fra i vettori di Rn è strettamente positivo il vettore 1Tn := [ 1 1 · · · 1 ] , mentre sono
strettamente non negativi i vettori ei della base canonica. Chiameremo vettori monomi i
multipli positivi dei vettori della base canonica, ovvero i vettori αei, α > 0, i = 1, 2, . . . , n.
Se si intende specificare qual è la componente non nulla, αei sarà detto i-monomio.

Alcune proprietà dei sistemi positivi dipendono soltanto dal fatto che gli elementi presenti
nelle varie posizioni delle matrici siano o non siano diversi da zero, e non dai particolari
valori assunti dagli elementi positivi. Lo studio di tali proprietà può essere affrontato
rappresentando vettori e matrici sull’algebra di Boole a due elementi, oppure associando
ai sistemi particolari grafi di influenza.

11.1.2 Rappresentazioni booleane e grafi di influenza

Un’algebra di Boole B è un insieme comprendente due elementi particolari 0 e 1 e sul
quale sono definite

1Nomenclatura e simbologia non sono uniformi in letteratura: talvolta matrici e vettori “strettamente
positivi” sono classificati invece come “positivi” e la notazione “>>” di questi Appunti è sostituita da “>”.
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• due operazioni binarie, di somma e prodotto2, entrambe commutative e associative,
per le quali valgono, per ogni a, b, c ∈ B, le proprietà di assorbimento

a+ (a · b) = a, a · (a+ b) = a (11.2)

e le proprietà distributive (della somma rispetto al prodotto e del prodotto rispetto
alla somma)

a · (b+ c) = (a · b) + (a · c), a+ (b · c) = (a+ b) · (a+ c) (11.3)

• un’ operazione unaria di negazione (o complementazione), che indicheremo barrando
l’elemento su cui opera e che soddisfa, per ogni a ∈ B, le condizioni

a+ ā = 1, a · ā = 0 (11.4)

Gli esempi di algebra di Boole che rivestono interesse per questo capitolo sono:

Esempio 11.1.1 [Algebra a due elementi B2] Sull’insieme {0, 1} si definiscono le operazioni

- di addizione: 0 + 0 = 0; 1 + 0 = 0 + 1 = 1 + 1 = 1:

- di moltiplicazione: 0 · 0 = 1 · 0 = 0 · 1 = 0; 1 · 1 = 1:

- di complementazione: 0̄ = 1, 1̄ = 0.

Esse soddisfano banalmente le proprietà di assorbimento, distributive e le (11.4).

Esempio 11.1.2 [Vettori booleani] L’insieme Bn2 delle colonne “booleane” a n componenti e a
valori in B2 26664

ξ1
ξ2
...
ξn

37775 , ξi ∈ B2

ff

con le operazioni di somma, di prodotto e di complementazione definite per componenti

26664
ξ1
ξ2
...
ξn

37775+

26664
η1
η2
...
ηn

37775 =

26664
ξ1 + η1
ξ2 + η2

...
ξn + ηn

37775 ,
26664
ξ1
ξ2
...
ξn

37775 ·
26664
η1
η2
...
ηn

37775 =

26664
ξ1η1
ξ2η2

...
ξnηn

37775 ,
−−−26664
ξ1
ξ2
...
ξn

37775 =

26664
ξ̄1
ξ̄2
...
ξ̄n

37775
costituisce un’algebra di Boole. Quali sono gli elementi 0 e 1?

• Esercizio 11.1.1 [Insieme delle parti di un insieme] Dato un insieme non vuoto S, l’insieme
P (S) delle parti di S, ovvero l’insieme i cui elementi sono i sottoinsiemi di S, è un’algebra di Boole
rispetto alle operazioni di unione insiemistica (= somma), intersezione insiemistica (= prodotto) e
complementazione ad S. Gli elementi 0 e 1 si identificano rispettivamente con l’insieme vuoto ∅ e
con l’insieme S.

In un’algebra di Boole B si introduce la relazione binaria ≤ ponendo a ≤ b⇔ a = ab
Essa è riflessiva, transitiva (infatti a = ab e b = bc implicano a = a(bc) = (ab)c = ac) e
antisimmetrica (se a = ab e b = ab, allora a = b), quindi è una relazione d’ordine parziale.
L’elemento 0 è il minimo di tutti gli elementi di B, nel senso che 0 ≤ a, ∀a ∈ B, mentre
l’elemento 1 è il massimo.

2Il prodotto è denotato con “·” o, più semplicemente, giustapponendo i fattori; in altri contesti, e in
particolare quando si considera l’algebra dei sottoinsiemi di un insieme, l’operazione di somma si denota
con “∪” e quella di prodotto con “∩”.
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• Esercizio 11.1.2 Si dimostri che a ≤ b⇔ b = a+ b.

] Suggerimento: a = ab⇔ b = b+ ab = b+ a; b = a+ b⇔ a = a(a+ b) = ab

• Esercizio 11.1.3 (i) In Bn2 risulta 26664
ξ1
ξ2
...
ξn

37775 ≤
26664
η1
η2
...
ηn

37775
se e solo se ηi = 0⇒ ξi = 0, ∀i, ovvero se la presenza di una componente nulla nel secondo vettore
implica che la medesima componente sia nulla anche nel primo.

(ii) Sia a ∈ Bn2 un vettore non nullo. La diseguaglianza x ≤ a implica x = a oppure x = 0 se e solo
se il vettore a ha una sola componente unitaria.

Introduciamo una mappa \ dai reali non negativi R+ nell’algebra di Boole a due elementi

\ : R+ → B2 : r 7→ r\ =
{ 0 se r = 0

1 se r > 0.
(11.5)

Notiamo che, se r1, r2 ∈ R+, allora r\1 + r\2 = (r1 + r2)\ e r\1 · r
\
2 = (r1r2)\. Ciò significa

che si ottiene il medesimo elemento booleano eseguendo prima le operazioni di somma e
prodotto fra reali non negativi e applicando poi la mappa \ al numero reale cos̀ı ottenuto,
oppure trasformando prima gli operandi con la mappa \, ed eseguendo poi sui trasformati
le corrispondenti operazioni booleane.
La mappa \ si estende alle matrici non negative, associando alla matrice non negativa
M = [mij ] ∈ Rp×m

+ la matrice booleana M \ ∈ Bp×m2 , nella quale l’elemento in posizione
(i, j) è m\

ij . È facile verificare che, se sostituiamo ai vettori di ingresso, stato e uscita u(t),
x(t), y(t) e alle matrici F,G,H,D i corrispondenti vettori booleani u\(t), x\(t), y\(t) e le
matrici booleane F \, G\, H\, D\, il sistema

x\(t+ 1) = F \x\(t) +G\u\(t)
y\(t) = H\x\(t) +D\u\(t) (11.6)

inizializzato da x\(0) fornisce ad ogni istante l’immagine “booleana” delle grandezze de-
scritte dal sistema positivo (11.1), inizializzato da x(0).
La corrispondenza \ che associa al sistema positivo Σ = (F,G,H,D) il sistema booleano
Σ\ = (F \, G\, H\, D\) non è iniettiva, poiché esistono infiniti sistemi positivi che danno
luogo al medesimo sistema booleano. Ciononostante, alcune proprietà di (11.1) possono
essere investigate direttamente su (11.6), poiché dipendono soltanto dalla presenza o as-
senza di elementi positivi nelle matrici e nei vettori coinvolti nella dinamica, ma non dai
loro particolari valori3.

Esempio 11.1.3 Le matrici positive

F1 =

»
6 4
5 5

–
, F2 =

264
1

2

1

4

1

4

1

2

375
hanno la medesima immagine booleana, ma la prima descrive un sistema instabile, la seconda uno
asintoticamente stabile.

3e quindi sono proprietà invarianti rispetto alla relazione di equivalenza fra sistemi positivi
(F,G,H,D) ∼ (F̄ , Ḡ, H̄, D̄)⇔ (F \, G\, H\, D\) = (F̄ \, Ḡ\, H̄\, D̄\).
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Esempio 11.1.4 La proprietà che fra gli stati raggiungibili da 0 in t passi ci sia un vettore
strettamente positivo dipende soltanto dalla coppia (F \, G\), e non dalla particolare coppia non
negativa (F,G) che ha per immagine (F \, G\). Infatti, se per effetto di un ingresso non negativo
u(0),u(1), . . . .u(t− 1) si ottiene

x(t) =

t−1X
σ=0

F t−σ−1Gu(σ) >> 0,

al tempo t si ottiene uno stato strettamente positivo sostituendo a F e G due qualsiasi matrici non
negative aventi la medesima immagine booleana di F e G .

• Esercizio 11.1.4 Se F, F̄ sono matrici non negative n × n e x(0), x̄(0) sono vettori di Rn+, in
evoluzione libera
(i) se F ≥ F̄ e x(0) ≥ x̄(0) allora x(t) ≥ x̄(t), ∀t ≥ 0;
(ii) se F \ ≥ F̄ \ e x\(0) ≥ x̄\(0), non è in genere vero che x(t) ≥ x̄(t), ∀t ≥ 0.

Le proprietà di un sistema positivo Σ = (F,G,H) con m ingressi, n variabili di stato e p
uscite che possono essere studiate mediante il sistema booleano Σ\ = (F \, G\, H\), possono
esserlo anche ricorrendo a un grafo di influenza orientato, costituito da m+ n+ p vertici,
indiciati nelle variabili ui, xj e yk.
Esso avrà

- un arco con origine nel vertice ui e termine nel vertice xj se gji 6= 0;

- un arco con origine nel vertice xj e termine nel vertice xh se fhj 6= 0;

- un arco con origine nel vertice xh e termine nel vertice yk se hkh 6= 0.

L’informazione circa il sistema Σ fornita dal grafo di influenza è la stessa che forniscono
le matrici booleane F \, G\, H\: la presenza di

- un arco da ui a xj equivale a gji 6= 0 in G, quindi a g\ji = 1 in G\;

- un arco da xj a xh equivale a fhj 6= 0 in F , quindi a f \hj = 1 in F \;

- un arco da xh a yk equivale a hkh 6= 0 in H, quindi a h\kh = 1 in H\.

Esempio 11.1.5 Al sistema autonomo

x(t+ 1) = Fx(t) =

2664
2 0

√
3 0

7 1 0 0
0
√

2 0 2
0 2 1 0

3775
2664
x1

x2

x3

x4

3775 (11.7)

rimangono associati la matrice booleana

F \ =

2664
1 0 1 0
1 1 0 0
0 1 0 1
0 1 1 0

3775 (11.8)

e il grafo orientato riportato in figura 11.1.1.
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Esempio 11.1.6 Al sistema positivo con due in-
gressi u1 e u2, tre variabili di stato x1, x2 e x3 e
un’unica uscita y, con matrici

F =

24 0 1 2
2 0 4
2 0 1

35 , G =

24 2 1
0 0
0
√

3

35 , H = [ 0 5 0 ] ,

(11.9)
corrisponde il sistema booleano

F =

24 0 1 1
1 0 1
1 0 1

35 , G =

24 1 1
0 0
0 1

35 , H = [ 0 1 0 ] ,

(11.10)
e il grafo di influenza di figura 11.1.2.
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Figura 11.1.2

Sul grafo di influenza si possono leggere alcuni caratteri del comportamento dinamico del
sistema:

- la presenza di un arco dal vertice ui al nodo xj corrisponde al fatto che, se la
componente ui(t) dell’ingresso è positiva, nell’istante successivo la componente xj(t+
1) dello stato è positiva;

- la presenza di un arco dal vertice xj al nodo yk corrisponde al fatto che, se la
componente xj(t) dello stato è positiva, nel medesimo istante la componente yk(t)
dell’uscita è positiva.

- la componente xj(t+ 1) è positiva se e solo se xj è vertice terminale di un arco con
origine in qualche vertice ui e l’ingresso ui(t) è positivo, oppure xj è vertice terminale
di almeno un arco con origine in qualche vertice xi e la componente xi(t) è positiva.

Un cammino di lunghezza h in un grafo orientato è una successione di h archi del grafo,
tale che il vertice terminale dell’arco i-esimo è vertice iniziale dell’arco (i+ 1)-esimo. Un
cammino con origine nel vertice s e termine nel vertice r si può individuare assegnando la
successione dei suoi vertici s→ v1 → v2 → . . .→ vh−1 → r.
In particolare, se vertice iniziale e vertice finale coincidono (i.e. s = r), il cammino è
un ciclo, e un ciclo di lunghezza h è un circuito se h vertici sono distinti. In un grafo
con n vertici non ci possono essere circuiti di lunghezza maggiore di n e ogni cammino di
lunghezza n o maggiore comprende almeno un circuito.
Alla presenza di un elemento positivo nella posizione (r, s), r, s ∈ {1, 2, . . . , n} della
potenza F h della matrice F = [fij ] corrisponde l’esistenza di cammini di lunghezza h
con origine nel vertice xs e termine nel vertice xr del grafo. Infatti, il generico addendo
fr,i1fi1,i2 . . . fih−1,s della somma che fornisce l’elemento di indici r, s in F h

[F h]r,s =
∑

i1,i2,...ih−1

fr,i1fi1,i2 . . . fih−1,s

è positivo se e solo se sono positivi tutti i suoi fattori. Ciò equivale all’esistenza di un arco
dal vertice xs al vertice xih−1

, un arco dal vertice xih−1
al vertice xih−2

, . . ., un arco dal
vertice xi1 al vertice xr, ovvero di un cammino

xs → xih−1
→ xih−2

→ . . .→ xi1 → xr

da xs ad xr, passante per i vertici xih−1
, xih−2

, . . . , xi1 .
Quindi [F h]r,s è positivo se e solo se nel grafo di F esiste almeno un cammino di lunghezza
h che connette xs a xr. Il grafo di F si dice fortemente connesso se, comunque si scelgano
i vertici xs e xr, esiste un cammino con inizio in xs e termine in xr.
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11.2 Matrici quadrate non negative: proprietà combinatorie

Le proprietà dei sistemi positivi che dipendono dal fatto che taluni elementi delle matrici
siano nulli e altri no, ma non dai loro particolari valori numerici reali, sono dette combina-
torie. Perciò esse possono essere riferite indifferentemente alle matrici reali F,G,H, alle
corrispondenti matrici booleane F \, G\, H\, o alla struttura del grafo di influenza.

11.2.1 Matrici di permutazione e matrici monomie

Se F è una matrice in Rn×n
+ , il ricorso a trasformazioni di similarità non conserva in gene-

rale il suo carattere non negativo, come del resto un cambiamento di base nello spazio Rn

indotto da una generica matrice invertibile non garantisce che le componenti di un vettore
conservino il segno passando dalla vecchia base alla nuova. Inoltre, per i sistemi positivi è
importante conservare non solo il carattere non negativo delle grandezze in gioco ma anche
il significato delle componenti dei vettori (a meno di cambiamenti di scala e/o permutazioni
delle componenti stesse) e, conseguentemente, la presenza o l’assenza di interazione fra
le variabili. La classe delle trasformazioni che possono applicarsi a F per indagarne la
struttura è perciò molto meno generale del gruppo di similarità e si riduce essenzialmente
alla classe delle trasformazioni di cogredienza, indotte dalle matrici di permutazione4, o a
quella, un poco più estesa, delle similarità indotte da matrici monomie.
Alla permutazione

σ =
(

1 2 . . . n− 1 n
i1 i2 . . . in−1 in

)
associamo la matrice di permutazione

Πσ := [ ei1 ei2 . . . ein ] .

Essa trasforma la base “vecchia” (v1,v2, . . . ,vn) nella base “nuova”, ottenuta per permu-
tazione della vecchia,

(vi1 ,vi2 , . . . ,vin) = (v1,v2, . . . ,vn)Πσ.

Il vettore rappresentato nella base vecchia dalla colonna x = [ ξ1 ξ2 · · · ξn ]T è rapp-
resentato nella base “permutata” dalla colonna

Π−1
σ


ξ1

ξ2
...
ξn

 = ΠT
σ


ξ1

ξ2
...
ξn

 =


eTi1
eTi2
...

eTin



ξ1

ξ2
...
ξn

 =


ξi1
ξi2
...
ξin

 .
Analogamente, la trasformazione lineare rappresentata rispetto alla base (v1,v2, . . . ,vn)
dalla matrice F ∈ Rn×n, nella base permutata è rappresentata dalla matrice

ΠT
σFΠσ =


eTi1
eTi2
...

eTin



f1,1 f1,2 . . . f1,n

f2,1 f2,2 . . . f2,n

. . . . . . . . . . . .
fn,1 fn,2 . . . fn,n

 [ ei1 ei2 . . . ein ] =


fi1,i1 fi1,i2 . . . fi1,in
fi2,i1 fi2,i2 . . . fi2,in
. . . . . . . . . . . .
fin,i1 fin,12 . . . fin,in

 ,
4Per ulteriori proprietà delle matrici di permutazione, si veda il par 14. dell’Appendice di Algebra

Lineare
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ottenuta applicando la medesima permutazione alle colonne e alle righe di F . Due matrici
che differiscono per una similarità indotta da una matrice di permutazione (e quindi per
la medesima permutazione operata sulle righe e sulle colonne) si dicono “cogredienti”.
Ovviamente la cogredienza preserva le proprietà di non negatività delle matrici, nonché il
numero e il valore delle componenti positive di righe o colonne che si corrispondono nella
permutazione.

Le matrici monomie (dette anche matrici di permutazione generalizzate), si ottengono
dalle matrici di permutazione moltiplicandole (a destra o a sinistra) per matrici diagonali
positive non singolari. Una matrice monomia (che ha quindi per colonne e per righe vettori
monomi) ha struttura del tipo5

M = ∆Π =


d1

d2
. . .

dn−1

dn




0 0 ... 0 1
1 0 ... 0 0

...
0 0 ... 1 0
0 1 ... 0 0

 =


0 0 ... 0 d1

d2 0 ... 0 0
...

0 0 ... dn−1 0
0 dn ... 0 0

 , (11.11)

con di numeri reali positivi. Π e ∆Π hanno la medesima immagine booleana e il medesimo
grafo di influenza. Si verifica direttamente che

- la matrice monomia ∆Π può essere espressa anche nella forma Π(ΠT∆Π) = Π∆̄,
dove la matrice diagonale ∆̄ appare come fattore destro;

- il prodotto di due matrici monomie è una matrice monomia, dato che

(∆1Π1)(∆2Π2) = ∆1(Π1∆2)Π2 = ∆1(Π1∆2ΠT
1 )Π1Π2

risulta essere prodotto della matrice diagonale ∆1(Π1∆2ΠT
1 ) e della matrice di per-

mutazione Π1Π2;

- la matrice monomia ∆Π ha un’inversa monomia, dato che (ΠT∆−1)(∆Π) = In.

Le similarità indotte da matrici monomie corrispondono a permutazioni dei vettori di base
accompagnate da una moltiplicazione di ciascuno di essi per una costante positiva, quindi
ad un riordino delle variabili di stato e ad un cambiamento delle unità di misura utilizzate
per determinarne i valori.
Come si vedrà nel seguito, le matrici monomie giocano un ruolo rilevante nello studio delle
proprietà strutturali (raggiungibilità etc.) dei sistemi positivi.

• Esercizio 11.2.1 Si dimostri che se una matrice positiva non singolare F ∈ Rn×n+ ha un’inversa X
positiva allora F è necessariamente monomia.

] Suggerimento: Se FX = In e se gli elementi fih, fik della riga i-esima fossero entrambi positivi,
nella matrice X dovrebbe essere xhj = xkj = 0,∀j 6= i, quindi le righe h-esima e k-esima di X
risulterebbero proporzionali e X non sarebbe invertibile.

5Per non appesantire la notazione, in (11.11) si fa riferimento a una specifica matrice di permutazione.
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11.2.2 Classificazione delle matrici non negative

Definizione 11.2.1 [Matrici primitive, irriducibili, riducibili] Una matrice F in
Rn×n

+ si dice
• primitiva se esiste un intero h > 0 per cui risulta F h >> 0, ovvero se

[F h]rs > 0, ∀r, s ∈ {1, 2, . . . , n};

il più piccolo esponente h in corrispondenza al quale si ha F h >> 0 è detto “esponente
di primitività” di F ;

• irriducibile se in corrispondenza ad ogni r, s ∈ {1, 2, . . . , n} esiste un esponente h
(che dipende in genere da r ed s) per cui risulta

[F h]rs > 0;

• riducibile se esistono r ed s tali che, per ogni h > 0, in F h si abbia

[F h]rs = 0, ∀h ≥ 0.

Le matrici quadrate strettamente positive sono primitive, le primitive sono irriducibili
e l’insieme delle matrici riducibili complementa quello delle matrici irriducibili. D’altra
parte

F1 =
[

1 1
1 0

]
, F2 =

[
0 1
1 0

]
sono primitiva ma non strettamente positiva la prima e irriducibile ma non primitiva la
seconda.
Si osservi che una matrice quadrata F con una riga o una colonna nulla è sempre riducibile,
poiché la riga o la colonna rimangono nulle in ogni potenza positiva della matrice.

• Esercizio 11.2.2 [Esponente di primitività] (i) L’esponente di primitività di una matrice primi-
tiva n× n può essere maggiore di n: si consideri, ad esempio, la matrice

F =

2664
0 1 0 0
0 0 1 0
1 0 0 1
1 0 0 0

3775
(ii*) L’esponente di primitività non eccede (n − 1)2 + 1, ed esistono matrici primitive per le quali
esso raggiunge tale valore (cfr. Brualdi, Ryser “Combinatorial Matrix Theory”, Cambridge U.P.)
(iii) Se F è primitiva con esponente di primitività h, allora Fh+1 >> 0 e quindi, induttivamente,
Fh+j >> 0 per ogni j ≥ 0.

] Suggerimento per (iii): Ogni colonna di F è non nulla, altrimenti Fh conterrebbe una colonna
nulla; inoltre [Fh+1]rs si ottiene moltiplicando la riga r-esima, strettamente positiva, di Fh per la
colonna s-esima, positiva, di F .

• Esercizio 11.2.3 [Elementi diagonali e primitività] Una matrice irriducibile F avente un ele-
mento diagonale positivo è primitiva, ma esistono matrici primitive aventi diagonale nulla.

] Suggerimento: Si supponga [F ]1,1 > 0. Qualunque sia j, la definizione di irriducibilità implica
che, per qualche k > 0 si abbia [F k]1,j > 0. Da [F ]1,1 > 0 e [F k]1,j > 0 segue allora [F k+1]1,j > 0.
Quindi, se R è abbastanza grande, FR ha strettamente positiva la prima riga. In modo analogo
si prova che, se C è abbastanza grande, FC ha strettamente positiva la prima colonna e, posto
M = max{R,C}, FM ha strettamente positive la prima riga e la prima colonna. Allora F 2M è
strettamente positiva. Ma F = [ e2 + e3 e1 + e3 e1 + e2 ] ha diagonale nulla ed è primitiva.
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• Esercizio 11.2.4 Sia F ∈ Rn×n+ .

(i) Se per qualche h > 0 una colonna di Fh è nulla, allora F è riducibile.
(ii) Se F è irriducibile e per qualche h > 0 una colonna di Fh è strettamente positiva, F è primitiva.

] Suggerimento (i): Se la colonna j-esima di Fh è nulla, è nulla la colonna j-esima in tutte le
potenze successive di F . Se F fosse irriducibile, per qualche k ≥ 1 risulterebbe [F k]jj > 0, quindi
anche [F νk]jj > 0, ν = 1, 2, . . .. (ii) Se la colonna j-esima è strettamente positiva in Fh, lo
è in tutte le potenze successive di F . Per ogni i 6= j, esiste k > 0 tale che [F k]ji > 0, quindi
Fh+k = FhF k ha strettamente positive la i-esima e la j-esima colonna. Iterando la procedura...

La seguente proposizione riporta alcune importanti caratterizzazioni della irriducibilità.

Proposizione 11.2.2 [Condizioni di irriducibilità] Una matrice F ∈ Rn×n
+ di di-

mensione n ≥ 2 è irriducibile se e solo se vale una qualsiasi delle condizioni equivalenti
sottoelencate:

1) [Definizione 11.2.1] per ogni coppia di indici (r, s) esiste un esponente h > 0 per
cui risulta [F h]rs > 0;

1’) [Grafo di influenza] il grafo di infuenza della matrice F è strettamente connesso;

2) [Non triangolarizzabilità] non esiste alcuna matrice di permutazione Π per cui
si abbia

F̄ = ΠTFΠ =
[
F̄11 0
F̄21 F̄22

]
, (11.12)

dove F̄11 e F̄22 sono sottomatrici quadrate non vuote;

3) [Azione di F sui vettori positivi] se il vettore y ∈ Rn
+ ha k componenti positive,

con 0 < k < n, allora (In + F )y ha almeno k + 1 componenti positive;

4) [Potenze di F e vettori strettamente positivi] (In +F + . . .+Fn−1)y >> 0
per ogni vettore positivo y ∈ Rn

+;

4’) qualunque sia k ≥ 0, (F k + F k+1 + . . . + F k+n−1)y >> 0 per ogni vettore positivo
y ∈ Rn

+;

4”) esiste k ≥ 0 tale per cui (F k +F k+1 + . . .+F k+n−1)y >> 0 per ogni vettore positivo
y ∈ Rn

+;

5) [Potenze di F e matrici strettamente positive] la matrice (I+F+. . .+Fn−1)
è strettamente positiva.

5’) per ogni scelta di k ≥ 0, la matrice F k+F k+1 + . . .+F k+n−1 è strettamente positiva;

5”) esiste k ≥ 0 tale per cui la matrice F k+F k+1 + . . .+F k+n−1 è strettamente positiva;

Prova (1) ⇔ (1’) è immediata dalle definizioni.
(1) ⇒ (2) Verifichiamo che la triangolarizzabilità, ovvero la negazione di (2), implica la
negazione di (1). Se per qualche matrice Πσ, associata a una permutazione

σ =
(

1 2 . . . n− 1 n
i1 i2 . . . in−1 in

)
,

nella scomposizione a blocchi (11.12) fosse nullo il blocco F̄12, anche in F̄ k = ΠT
σF

kΠσ,
∀k > 0, sarebbe nullo il blocco corrispondente ed esisterebbero interi r, s per i quali sono
tutti nulli gli elementi in posizione (r, s) delle matrici ΠT

σF
kΠσ. Allora in tutte le matrici

F k sarebbero nulli gli elementi in posizione (σ(r), σ(s)).
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(2) ⇒ (3) Sia Π una matrice di permutazione tale che le prime n − k coordinate di
x := Πy siano nulle, e siano positive le ultime k, indicate collettivamente con il blocco
colonna x2 >> 0:

x = Πy =
[

0
x2

]
n− k
k

.

Evidentemente il numero degli zeri in (In +F )y = y +Fy ≥ y non può essere più grande
del numero n− k degli zeri di y.
D’altra parte, se il numero degli zeri in (In+F )y fosse eguale a n−k, per ogni i avremmo
che l’annullarsi di una coordinata di y implica l’annullarsi della medesima coordinata di
Fy. Di conseguenza, 0 = (Πy)i = xi implicherebbe 0 = (ΠFy)i = (ΠFΠTx)i.
Perciò, se nel vettore x sono nulle tutte e sole la componenti di indice i = 1, 2, . . . , n− k,
nel vettore ΠFΠTx sono nulle le componenti di indice i = 1, 2, . . . , n − k e, ponendo
F̄ := ΠFΠT , ciò si traduce nella condizione

F̄

[
0
x2

]
=
[
F̄11 F̄12

F̄21 F̄22

] [
0
x2

]
=
[

0
?

]
n− k
k

. (11.13)

Poiché x2 è strettamente positivo, (11.13) implica F̄12 = 0 e la riducibilità di F .
(3) ⇒ (4) Proviamo che, se (In +F + . . .+F h)y ha k componenti positive e k < n, allora
(In + F + . . .+ F h+1)y ne ha k̄ ≥ k + 1. Per il punto 3, ciò è vero se h = 0. Procediamo
allora per induzione rispetto ad h. Il vettore (In + F + . . .+ F h+1 + F h+2)y ha gli stessi
zeri di

(In + 2F + . . .+ 2F h+1 + F h+2)y = (In + F )[(In + F + . . .+ F h+1)y], (11.14)

quindi, se k̄ < n, esso ha almeno una componente positiva in più di (In+F + . . .+F h+1)y.
È ora evidente che (In + F + . . .+ Fn−2 + Fn−1)y è strettamente positivo.
(4) ⇒ (4’) Per ogni y > 0, se vale la (4) vale anche Fy > 0. Altrimenti, se fosse Fy = 0,
da y + Fy + . . . + Fn−1y >> 0 seguirebbe y >> 0, quindi sarebbe nulla la matrice F , e
ciò è incompatibile con (4).
Procedendo per induzione, per ogni y > 0 e per ogni k > 0 il vettore F ky = F (F k−1y)
è positivo, quindi è strettamente positivo il vettore (In + F + . . . + Fn−1)F ky = (F k +
F k+1 + . . .+ F k+n−1)y.
(4’) ⇒ (4”) Ovvio.
(4”) ⇒ (5”) Per i = 1, 2, . . . , n, scegliendo in (4”) y = ei si verifica che la i-esima colonna
di F k + F k+1 + . . .+ F k+n−1 è strettamente positiva.
(5”)⇒ (5) Se un elemento [In+F + . . .+Fn−1]r,s fosse nullo, sarebbero nulli [I]r,s, [F ]r,s,
. . . , [Fn−1]r,s. Per il teorema di Cayley Hamilton, ciascuna delle matrici Fn, Fn+1, . . . può
essere espressa come combinazione lineare di I, F, . . . , Fn−1, quindi l’elemento di indici r, s
in ciascuna di esse sarebbe nullo, perché ottenuto combinando [I]r,s, [F ]r,s, . . . , [Fn−1]r,s,
che sono tutti nulli, e F k + F k+1 + . . .+ F k+n−1 non sarebbe strettamente positiva.
(5) ⇒ (5’) Se In +F + . . .+Fn−1 >> 0, la matrice F non ha colonne nulle. Quindi risulta
(In + F + . . .+ Fn−1)F >> 0 e, induttivamente, (In + F + . . .+ Fn−1)F k >> 0, ∀k ≥ 0.
(5’) ⇒ (1) Nella (5’) si scelga k = 1, ovvero (F + F 2 + . . . + Fn) >> 0. Allora, per
ogni scelta di r e di s, una almeno delle matrici F, F 2, . . . , Fn ha positivo l’elemento in
posizione (r, s), ossia [F h]r,s risulta positivo per qualche h compreso fra 1 e n.
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• Esercizio 11.2.5 Se F è una matrice non negativa n×n e [Fh]rs = 0 per h = 0, 1, . . . , n− 1, allora
[Fh]rs = 0 per ogni h. Quindi F è riducibile.

] Suggerimento: La colonna s-esima della matrice I+F + . . .+Fn−1 non è strettamente positiva.

• Esercizio 11.2.6 Sia F una matrice non negativa n× n e sia v ∈ Rn+ un vettore positivo.
(i) Se i vettori Fhv, h = 1, 2, . . . n, hanno nulla la prima componente, ossia (Fv)1 = (F 2v)1 =
. . . = (Fnv)1 = 0, allora F è riducibile.
(ii) Se il vettore w = Fv + F 2v + . . . + Fnv ha nulle le componenti in posizione i1, i2, . . . , ir e
positive le altre, allora in F è nulla la sottomatrice avente i1, i2, . . . , ir per indici di riga e gli altri
elementi dell’insieme {1, 2, . . . , n} per indici di colonna.

] Suggerimento: (i) la riducibilità segue dal punto (4’) della proposizione 11.2.2, scegliendovi k = 1.
(ii) il vettore Fw, combinazione a coefficienti positivi di tutte le colonne di F con indice diverso da
i1, i2, . . . , ir, ha nulle tutte le componenti in posizione i1, i2, . . . , ir. Quindi le colonne suddette di F
hanno componenti nulle nelle posizioni i1, i2, . . . , ir.

• Esercizio 11.2.7 Se F ∈ Rn×n+ , n ≥ 2 è irriducibile, (i) F può avere qualche autovalore nullo?

(Sugg.: si consideri F = 11T ) F può essere nilpotente ? (Sugg.: si consideri il punto (5’) della
prop. 11.2.2) F − diagF può essere riducibile? (Sugg.: si consideri il punto (2) della prop. 11.2.2)

Anche la primitività, come l’irriducibilità, è riconducibile a alla struttura del grafo di F .
Per verificarlo, supponiamo che F sia una matrice n×n irriducibile, avente quindi un grafo
di influenza fortemente connesso. Se scegliamo nel grafo un vertice xi e consideriamo le
lunghezze dei cicli passanti per xi , l’insieme Ni di tali lunghezze è additivamente chiuso.
Infatti, se gli interi ν1 e ν2 appartengono a Ni perché sono lunghezze di due cicli γ1

e γ2 passanti per xi, il ciclo ottenuto percorrendo, a partire da xi, prima γ1 e poi γ2 ha
lunghezza ν1 +ν2, quindi ν1 +ν2 ∈ Ni. Per studiare gli insiemi Ni, tornerà utile premettere
alcune proprietà dei numeri interi.
Se a 6= 0, con la notazione a|b (“a divide b”, o “a è divisore di b”) si intende che esiste
un numero x per cui b = ax. Il massimo comun divisore (MCD) di un insieme non vuoto
N ⊂ N è un divisore d di tutti gli elementi di N , dotato della ulteriore proprietà che ogni
altro divisore comune d′ di N divide d, ossia soddisfa la condizione d′|d.

• Esercizio 11.2.8 Se d è il MCD degli elementi di un insieme infinito N ⊆ N, è anche MCD degli
elementi di qualche sottoinsieme finito di N .

Il lemma seguente, attribuito a Schur, stabilisce che ogni sottoinsieme non vuoto e addi-
tivamente chiuso di N contiene “quasi tutti” i multipli del suo MCD.
Lemma 11.2.3 [Schur] Sia N ⊆ N un insieme di interi positivi, non vuoto e chiuso
additivamente, e sia d il massimo comun divisore degli elementi di N . Allora esiste un
intero K > 0 tale che kd ∈ N per ogni k ≥ K.

Prova Supponiamo dapprima d = 1. Se 1 ∈ N , il risultato è ovvio e N = N. Altrimenti
esiste un sottoinsieme {n1, n2, . . . , nf} di N , finito e di cardinalità minima, tale da aversi

1 = MCD{n1, n2, . . . , nf}. (11.15)

La (11.15) equivale all’esistenza di f combinatori interi c1, c2, . . . cf , parte positivi e parte
negativi, soddisfacenti c1n1 + c2n2 + . . . + cfnf = 1 , ovvero, supponendo6 positivi
c1, c2, . . . ch, h < f, e negativi gli altri combinatori,

(c1n1 + c2n2 + . . .+ chnh)− (−ch+1nh+1 − ch+2nh+2 + . . .− cfnf ) = a− b = 1
6Basta, eventualmente, permutare gli elementi della combinazione.
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Poiché N è additivamente chiuso, a e b appartengono a N . Ponendo K = b(b − 1), ogni
intero k ≥ K soddisfa k = qb+ r con 0 ≤ r ≤ b− 1 e q ≥ b− 1, quindi

k = (q − r)b+ rb+ r = (q − r)b+ r(b+ 1) = (q − r)b+ ra (11.16)

appartiene a N , in quanto somma di elementi di N .
Supponiamo ora d > 1. Gli elementi di N sono divisibili per d, quindi l’insieme N ′ :=
{n
d
, n ∈ N} è costituito da interi positivi che hanno 1 come MCD, ed è additivamente

chiuso. Poiché esiste K > 0 per cui k ≥ K implica k ∈ N ′, gli interi kd appartengono a
N per ogni k ≥ K.

Lemma 11.2.4 [Cicli e circuiti in un grafo orientato fortemente connesso]
Sia G un grafo orientato e fortemente connesso, di vertici x1, x2, . . . xn.
Se z è il MCD delle lunghezze di tutti i cicli di G e zi è il MCD delle lunghezze dei cicli
passanti per il vertice xi, allora

i) z = zi;

ii) esiste K > 0 tale per cui, se k ≥ K, per ogni vertice xi di G passa qualche ciclo di
lunghezza kz;

iii) z è il MCD delle lunghezze dei circuiti di G.

Prova (i) Basterà verificare i punti seguenti:

• z|zi, i = 1, 2, . . . , n (11.17)

Infatti i cicli per xi sono un sottoinsieme dell’insieme di tutti i cicli di G. Allora z, divisore
comune delle lunghezze di tutti i cicli, è un divisore comune delle lunghezze dei cicli per
xi, quindi un divisore del MCD zi delle lunghezze dei cicli per xi.

• z1 = z2 = . . . = zn := d (11.18)

Consideriamo due vertici xj 6= xi. L’ipotesi di con-
nessione implica l’esistenza di un cammino orien-
tato π da xi a xj , di lunghezza p, e di un cammino
orientato π′ da xj a xi, di lunghezza p′. Se γi è un
arbitrario ciclo per xi, di lunghezza ν, zj divide sia
p + ν + p′, sia p + p′, quindi zj | ν. Ma allora, per
l’arbitrarietà del ciclo γi, zj è un divisore comune
delle lunghezze di tutti i cicli per xi, quindi divide il
MCD di tali lunghezze, ovvero zj | zi. Scambiando
i ruoli di xi e di xj , si conclude che zi | zj . Quindi
zi = zj , ∀i, j e si può porre d = z1 = . . . = zn.
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• d|z (11.19)

Ogni ciclo γ di G passa per almeno un vertice xj , quindi la sua lunghezza ν soddisfa zj | ν,
quindi d | ν. Allora d, essendo un divisore comune delle lunghezze di tutti i cicli del grafo,
divide il MCD z di tali lunghezze.
Da (11.17-11.19) si conclude che z = zi = d.
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(ii) L’insieme Ni delle lunghezze dei cicli per xi è additivamente chiuso, quindi per il
lemma di Schur esiste un intero Ki > 0 tale che, per ogni k ≥ Ki, kzi = kz è lunghezza
di qualche ciclo per xi. Basta allora scegliere K = maxi=1,...nKi per concludere che, se
k ≥ K, per ogni vertice xi passa qualche ciclo di lunghezza kzi = kz.
(iii) Sia c il MCD delle lunghezze dei circuiti di G. Poiché ogni circuito è un ciclo, z | c.
D’altra parte, ogni ciclo γ può essere decomposto (come?!) in un numero finito f di
circuiti elementari e la sua lunghezza ν è somma delle lunghezze c1, c2, . . . , cf dei circuiti
componenti. Da c | ci, i = 1, 2, . . . t segue c | ν, quindi c è un divisore comune delle lunghezze
di tutti i cicli del grafo e c | z. Allora c = z.

Proposizione 11.2.5 [Primitività e cicli del grafo di influenza] Una matrice
positiva F è primitiva se e solo se il suo grafo di influenza è fortemente connesso e il MCD
z delle lunghezze dei suoi circuiti è 1.

Prova Supponiamo dapprima che il grafo sia fortemente connesso (i.e. F sia irriducibile)
e che sia z = 1. Come conseguenza del punto (ii) del lemma 11.2.4, esiste K > 0 tale
che, se k ≥ K, per ogni vertice xi passa qualche ciclo di lunghezza k. D’altra parte, per
l’ipotesi di connessione, comunque si scelgano xi e xj esiste un cammino π che va da xi a
xj . Se p ne è la lunghezza, concatenando π con un ciclo per xj possiamo concludere che
esistono cammini da xi a xj di lunghezza p + k, per ogni k ≥ K. Quindi nella matrice
F p+k l’elemento [F p+k]ji è positivo per ogni k ≥ K. Il ragionamento, ripetuto per ogni
coppia di vertici, porta a concludere che le potenze della matrice F sono strettamente
positive quando l’esponente è abbastanza elevato.
Viceversa, supponiamo F primitiva (e, perciò, irriducibile). Per h abbastanza grande, F h

e F h+1 sono strettamente positive, quindi gli elementi diagonali soddisfano [F h]ii > 0 e
[F h+1]ii > 0. Poiché nel grafo di influenza di F passano per ciascun vertice xi sia cicli di
lunghezza h che di lunghezza h + 1, il MCD delle lunghezze dei cicli per xi, e quindi di
tutti i cicli, vale 1.

Il ricorso a trasformazioni di cogredienza consente di approfondire lo studio delle matrici
riducibili e di quelle irriducibili, chiarendo il carattere della loro azione sui vettori di
Rn

+. La forma normale delle matrici riducibili discende da considerazioni di carattere
combinatorio e verrà discussa immediatamente, mentre la forma ciclica di Frobenius delle
matrici irriducibili sarà discussa in un paragrafo successivo, basandosi su risultati che
esporremo più avanti.

Proposizione 11.2.6 [Forma normale di una matrice riducibile] Sia F ∈ Rn×n
+

una matrice non negativa riducibile di dimensione n > 1. Esiste allora una matrice di
permutazione Π che per cogredienza porta la matrice F nella seguente “forma normale”

F̄ = ΠTFT =



F̄1,1

0 F̄2,2

0 · · · . . .

0 0 . . . F̄h,h

|
|
|
|

O

−− −− −− −−− | − −− −− −−−
? ? · · · ?
? ? · · · ?
? ? · · · ?

|
|
|

F̄h+1,h+1

?
. . .

? ? F̄k,k


(11.20)
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in cui ciascun blocco diagonale F̄i,i, i = 1, 2, . . . , k > 1, è una matrice irriducibile, o la
matrice nulla di dimensione 1 per 1. Inoltre, se risulta h < k, in ciascuna riga a blocchi
successiva alla h-esima uno almeno dei blocchi fuori diagonale e indicati con ? è una
matrice positiva7. I blocchi F̄i,i, i = 1, 2, . . . , h, sono detti “blocchi isolati”.

Prova Poichè F è riducibile, per la proposizione precedente esiste una matrice di per-
mutazione Π1 che per cogredienza la riduce alla forma (11.12)

ΠT
1 FΠ1 =

[
A 0
? C

]
.

Se uno dei blocchi diagonali, p.es. il blocco C, ha dimensione maggiore di 1 ed è riducibile,
esiste un’ulteriore matrice Π2 che permuta i vettori di base che interessano il blocco C,
riducendo quest’ultimo per cogredienza a forma triangolare

(ΠT
2 ΠT

1 )F (Π1Π2) = ΠT
2

A | 0
− − −
? | C

Π2 =


A | 0 0
− − − − −
? | D 0
? | ? E

 ,
e cos̀ı via... Il procedimento di riduzione ha termine quando tutti i blocchi diagonali sono
irriducibili o sono matrici nulle di dimensione 1× 1.
Supponiamo infine che

- siano nulli tutti i blocchi in posizione (i, j), con i < T e j < i;
- il blocco in posizione (T, T ) abbia alla sua sinistra alcuni blocchi non nulli, ovvero

esistono alcuni blocchi non nulli in posizione (T, j) con j < T ;
- esista un ulteriore blocco in posizione (T + ν, T + ν), ν ≥ 1 alla cui sinistra , ovvero

nelle posizioni (T + ν, j), j < T + ν, i blocchi sono tutti nulli:

F̄1,1

0 F̄2,2

0 0
. . .

? ? . . . F̄T,T

? ? · · · ?
. . .

0 0 · · · 0 0 F̄T+ν,T+ν

? ? · · · ? ? ?
. . .

? ? . . . ? ? ? . . . F̄k,k


Permutando righe e colonne del blocco T -esimo con quelle del blocco (T + ν)-esimo, si
ottiene che tutti i blocchi in posizione (i, j), con i ≤ T e j < i, diventino nulli. Il
procedimento può essere iterato un numero finito di volte, fino all’ottenimento della forma
normale (11.20).

7e quindi non nulla.
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Esempio 11.2.1 [Modello statico di Leontief e irriducibilità] La versione statica del model-
lo di Leontief ipotizza un sistema economico, disaggregato in n settori S1, S2, . . . Sn, ciascuno dei
quali produce articoli di un’unica tipologia. Si assume che
- la produzione in ciascun settore Sk richieda la trasformazione di articoli prodotti nei vari settori
Si dell’economia, in quantità che dipendono linearmente dal livello di produzione nel settore Sk;
- la quota di produzione in ciascun settore, non destinata alla trasformazione da parte degli altri
settori, sia assorbita dalla domanda dei consumatori “esterni” (cioè non appartenenti ai settori).

Indichiamo con
• xi la produzione nell’unità di tempo del settore Si, misurata in unità di misura opportune (numero
di oggetti, di metri cubi, di tonnellate, di container, etc.)
• tik il coefficiente tecnologico che indica quante sono le unità di prodotto del settore Si necessarie
per produrre una unità di prodotto del settore Sk,
• di la domanda esterna, nell’unità di tempo, dell’articolo prodotto dal settore Si.
Otteniamo allora le relazioni

xi =
X
k

tikxk + di, i = 1, 2, . . . , n,

che esprimono il livello di produzione del settore Si necessario per soddisfare le richieste di tutti i
settori e la domanda esterna. Tali relazioni possono essere espresse in forma compatta, introducendo
i vettori non negativi x = [x1 x2 . . . xn ]T , d = [ d1 d2 . . . dn ]T e la matrice non negativa
T = [tik], tramite l’equazione

x = Tx + d. (11.21)

Gli elementi non nulli della colonna k-esima della matrice T corrispondono ai settori “di ingresso”
a Sk, nel senso che i loro prodotti sono necessari per la produzione di Sk. I valori numerici della
colonna rappresentano le unità di prodotto dei vari settori necessarie per ottenere un’unità di Sk.
Gli elementi non nulli della riga i-esima corrispondono invece ai settori “di uscita” da Si, cioè quelli
verso cui si indirizza la produzione di Si. Alla matrice T sono state attribuite varie denominazioni:
matrice della tecnologia, matrice ingresso-uscita, matrice dei consumi.
Ipotizzare che T sia irriducibile equivale a supporre (cfr. proposizione 11.2.2, punto 2) che nessun
sottoinsieme proprio di {S1, S2, . . . , Sn} sia “autosufficiente”, ovvero possa funzionare senza utiliz-
zare a sua volta prodotti provenienti da settori non appartenenti al sottoinsieme. Un’interpretazione
analoga è fornita dal punto 3 della medesima proposizione: la produzione degli articoli di ν settori
economici, con ν < n, si avvale di almeno un articolo prodotto dagli altri settori.

Indichiamo ora con pk e uk il prezzo e l’utile unitari degli articoli prodotti dal settore Sk. Il prezzo di
un articolo prodotto dal settore Sk è somma dei costi che il settore affronta per produrlo e dell’utile
che consegue nel commercializzarlo: pk =

P
i pitik + uk, k = 1, 2, . . . , n.

Ponendo pT = [ p1 p2 . . . pn ] , uT = [u1 u2 . . . un ], otteniamo

pT = pTT + uT . (11.22)

In un mercato equo, è ragionevole attendersi che offerta x e domanda d soddisfino l’equazione

uTx = pTd, (11.23)
ovvero che l’utile totale netto conseguito nell’insieme di tutti i settori eguagli l’ammontare comp-
lessivo pagato dal mercato per gli articoli consumati.

11.3 Catene cicliche

Al punto (3) della proposizione 11.2.2 si è affrontato il problema di quale sia la struttura
booleana della catena “ciclica” di vettori non negativi

g, Fg, F 2g, F 3g, . . . (11.24)

ottenuti a partire da un vettore g ≥ 0, quando la matrice F è irriducibile8.
In questo paragrafo intendiamo ampliare l’indagine sulla struttura booleana delle catene
cicliche (11.24), senza porre limitazioni a priori sulla natura della matrice nonnegativa F .

8Si tratta dei generatori dello spazio ciclico < F |g > considerato in Algebra Lineare (cfr. A.6.3)
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Per ogni vettore g ∈ Rn
+, denotiamo con supp(g) il “supporto” di g, ovvero il sottoinsieme

di {1, 2, . . . , n} costituito dagli indici delle componenti non nulle di g

k ∈ supp(g) ⇔ [g]k > 0.

È chiaro che, per qualsiasi g ∈ Rn
+ e per qualsiasi F ∈ Rn×n

+ , si ha

supp(g) ⊆ supp(g + Fg) ⊆ supp(g + Fg + F 2g) ⊆ . . . (11.25)

Nella proposizione che segue riassumiamo alcune proprietà della catena (11.24).

Proposizione 11.3.1 [Stazionarietà dei supporti] Siano F ∈ Rn×n
+ una matrice non

negativa e g ∈ Rn
+ un vettore non negativo.

i) Se supp(
∑ν

i=0 F
ig) = supp(

∑ν+1
i=0 F

ig), allora supp(
∑ν+1

i=0 F
ig) = supp(

∑ν+2
i=0 F

ig)
e la successione (11.25) è stazionaria almeno dall’insieme supp(

∑ν
i=0 F

ig) in avanti.

ii) La catena (11.25) è comunque stazionaria dall’insieme supp(
∑n−1

i=0 F
ig) in avanti.

iii) Se ` ∈ supp(Fn+hg) per qualche h ≥ 0 , allora ` ∈ supp(
∑n−1

i=0 F
ig), ovvero se risulta

positiva la componente `-esima di Fn+hg, la medesima componente è positiva in uno
almeno fra i vettori g, Fg, . . . , Fn−1g.

iv) Se in n vettori consecutivi di (11.24) è nulla la componente i-esima

(F hg)i = (F h+1g)i = . . . = (F h+n−1g)i = 0, (11.26)

la componente i-esima è nulla anche in tutti i vettori successivi F h+ng, F h+n+1g, . . ..
Quindi, se n vettori consecutivi di (11.24) sono nulli, lo sono anche tutti i vettori
successivi.

Prova (i) Se supp(
∑ν

i=0 F
ig) = supp(

∑ν+1
i=0 F

ig), verifichiamo che (I + F + . . . + F ν +
F ν+1)g e (I+F + . . .+F ν+1 +F ν+2)g hanno le medesime componenti nulle. A tale scopo,
basta notare che i quattro vettori

(I + F + . . .+ F ν + F ν+1 + F ν+2)g,
(I + F + . . .+ F ν + F ν+1)g + F (I + F + . . .+ F ν + F ν+1)g,
(I + F + . . .+ F ν)g + F (I + F + . . .+ F ν)g,
(I + F + . . .+ F ν + F ν+1)g

hanno le medesime componenti nulle.

(ii) è banalmente vera se g = 0. Se g 6= 0, (11.25) è una successione monotona di
sottoinsiemi non vuoti di {1, 2, . . . , n}, quindi deve presentare entro il passo n-esimo un
punto di stazionarietà e dopo tale passo, per il punto (i), essa rimane costante. Per tutti
i vettori successivi a

∑n−1
i=0 F

ig risulta allora

supp(
n−1+h∑
i=0

F ig) = supp(
n−1∑
i=0

F ig) h ≥ 0. (11.27)
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(iii) Se la componente `-esima di Fn+h è positiva, ` ∈ supp(
∑n+h

i=0 F
ig), quindi per (11.27)

` ∈ supp(
∑n−1

i=0 F
ig).

(iv) Posto v = F hg, la (11.26) equivale a (v)i = (Fv)i = . . . = (Fn−1v)i = 0. Per (ii)
risulta allora (Fn+kv)i = 0, k = 0, 1, . . ., e quindi Fn+h+kg = 0, k = 0, 1, . . . .

• Esercizio 11.3.1 Si provi l’implicazione (5”) ⇒ (5) nella proposizione 11.2.2 senza ricorrere al
teorema di Cayley-Hamilton.

Il seguente risultato è di fondamentale importanza nello studio della raggiungibilità dei
sistemi positivi.

Proposizione 11.3.2 [Vettori monomi in una catena ciclica: teorema di Coxson-
Larson] Siano F ∈ Rn×n

+ una matrice non negativa e g ∈ Rn
+ un vettore positivo. Se

per qualche k ≥ n il vettore F kg è `-monomio, allora uno almeno fra g, Fg, . . . Fn−1g è
`-monomio a sua volta.

Prova Dimostreremo l’asserto nel caso in cui sia k = n, verificando che, se g è positivo
ed Fng è `-monomio, allora è `-monomio almeno uno fra g, Fg, . . . , Fn−1g.
Nel caso in cui sia k > n, basterà porre allora g̃ = F k−ng. Essendo `-monomio il vettore
Fng̃, per qualche ν < n sarà `-monomio il vettore F ν g̃ = F k−(n−ν)g = F hg, con h =
k − (n− ν) < k. Se h < n si conclude, altrimenti basta iterare il ragionamento.
Assumiamo quindi che il vettore Fng sia `-monomio e riformuliamo il problema riferendoci
al grafo di influenza della coppia (F,g). Esso consta di 1 + n vertici, che identificheremo
con gli elementi dell’insieme {0, 1, 2, . . . , n}, e degli archi orientati che li connettono:

- c’è un arco da 0 a j > 0 se e solo se gj > 0,

- c’è un arco da j > 0 a i > 0 se e solo se fij > 0.

Conseguentemente, se S ⊆ {1, 2, . . . , n} denota il supporto di g,

- il supporto del vettore Fg (del vettore F rg, ∀r > 0) è costituito dall’insieme dei
vertici j ai quali si perviene con un cammino di un arco (di r archi) che nel grafo9

di F parta dagli elementi di S;

- l’ipotesi che Fng sia `-monomio corrisponde ad assumere che nel grafo di F esistano
cammini di lunghezza n con inizio in S, e che tali cammini si concludano tutti al
passo n-esimo nel vertice `;

- provare che F νg è `-monomio per qualche ν ≥ 0 equivale a provare che, nel grafo di
F , esistono cammini di lunghezza ν con inizio in S e che tali cammini si concludono
tutti nel vertice `.

Per procedere, ci serviremo del seguente
Lemma 11.3.3 [Circuiti nel grafo di F ] Nelle ipotesi della proposizione 11.3.2, nel
grafo di F

i) ogni cammino di n (o più) archi contiene un circuito.

9ovvero nel grafo con n vertici {1, 2, . . . , n} associato alla sola matrice F
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Se poniamo S = {j : j ∈ supp(g)} e se Fng è `-monomio, allora

ii) ogni circuito γ facente parte di un cammino π con inizio in S include il vertice `;

iii) i circuiti che fanno parte di cammini con inizio in S hanno tutti la medesima
lunghezza c (i.e. includono il medesimo numero c di vertici distinti).

Prova del Lemma 11.3.3 i) Ovvio: il grafo di F ha n vertici, quindi almeno uno di essi
viene incontrato due volte.

ii) Supponiamo che qualche circuito γ non passi per `, pur facendo parte di un
cammino π con origine in s ∈ S.
Consideriamo il cammino π∗ di lunghezza minima che connette s a uno qualsiasi dei vertici
di γ; ovviamente π∗ non attraversa due volte lo stesso vertice, altrimenti potrebbe essere
sostituito da un cammino più breve. Quindi π∗ ha lunghezza inferiore a n e potrebbe
essere proseguito indefinitamente ( in particolare fino al passo n-esimo) “ciclando” su γ.
Avremmo costruito in tal modo un cammino con origine in S e che al passo n-esimo non
transita per `.
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��
u���u -u
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u

s

γ

π

Figura 11.3.1
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iii) Siano γ e γ′ due circuiti, di lunghezza rispettivamente c e c′, facenti parte entrambi
di cammini con inizio in S, e supponiamo sia c > c′. Per il punto precedente γ e γ′ hanno
almeno il vertice ` in comune. Sia ora ρ un cammino di lunghezza minima r, certamente
minore di n, che congiunge un vertice di S con ` e consideriamo due diversi completamenti
di ρ a un cammino di n passi.

u - u - u - u - u
6

u - u
?u�

?u���
���s `

γ

γ′

ρ

Figura 11.3.2

Il primo completamento π′ consiste nel proseguire da ` percorrendo il circuito più breve
γ′ una sola volta e passare poi a descrivere fino al passo n-esimo il circuito più lungo; il
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secondo, π, prevede invece di proseguire da ` fino al passo n-esimo rimanendo sul circuito
più lungo γ. Poichè, in base all’ipotesi, dopo n passi ogni cammino con origine in S
transita per `, i due cammini π′ e π includono un numero intero di copie dei due circuiti
in questione e soddisfano quindi, per opportuni interi a e b,

n = r + c′ + bc b ≥ 0,
n = r + ac a > 0 (11.28)

Si ottiene allora c′ = (a− b)c, relazione evidentemente assurda essendo c > c′

Ritorniamo ora alla prova della Proposizione 11.3.2.e dimostriamo che nel grafo di F ogni
cammino π che abbia inizio nell’insieme S e lunghezza n − c (dove c è stato definito nel
lemma 11.3.3) termina nel vertice `.

Poiché Fng 6= 0 esistono certamente cammini di lunghezza n − c. con origine in S e
lunghezza n − c. Supponiamo, per assurdo, che uno di essi, π, abbia `′ 6= ` come vertice
terminale.

• Se i vertici di π∗ non sono tutti distinti, π∗ include qualche circuito γ, che sarà
descritto ν ≥ 1 volte e che, per il lemma 11.3.3, ha lunghezza c. Allora il cammino π che
si ottiene da π∗ descrivendolo ν + 1 volte inizia in S, ha lunghezza n e non termina in `,
e ciò contraddice l’ipotesi che Fng sia `-monomio.
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Figura 11.3.3

• Se i vertici di π∗ sono tutti distinti, basterà considerare un arbitrario circuito γ di
lunghezza c (l’esistenza di γ è garantita dal lemma 11.3.3). Poiché il grafo ha n vertici,
uno almeno di essi, j, appartiene sia a π∗ che a γ e il cammino che si ottiene descrivendo
π∗ fino a j, poi il circuito γ e infine π∗ da j a `′ ha lunghezza n, ma non termina in `.
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Figura 11.3.4
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Abbiamo cos̀ı verificato che ogni cammino con origine in S e lunghezza n − c termina in
`, quindi il vettore Fn−cg è `-monomio.

• Esercizio 11.3.2 Siano F ∈ Rn×n+ e g ∈ Rn+. Si verifichi che

i) se F kg è un vettore `-monomio per qualche k > 0, la matrice F contiene almeno una colonna
`-monomia.

ii) se l’insieme g, Fg, . . . Fn−1g, . . . contiene vettori `-monomi per ogni ` compreso fra 1 ed n, allora
FT è cogrediente a una matrice compagna e g è vettore monomio. È vero il viceversa?

• Esercizio 11.3.3* Con riferimento alla dimostrazione della Proposizione 11.3.3, si supponga che
i cammini che hanno inizio nell’insieme S raggiungano soltanto n′ < n vertici del grafo di F . Si
verifichi che

i) L := supp(g + Fg + . . .+ Fn−1g) consta esattamente di n′ elementi;

ii) se F kg è `-monomio, allora è tale uno almeno fra i vettori g, Fg, . . . Fn
′−1g;

iii) ogni colonna di F con indice corrispondente a un elemento di supp(g) ha per supporto un sottoin-
sieme di L.

11.4 Proprietà spettrali : teorema di Perron

In questo paragrafo e nei due successivi intendiamo studiare l’evoluzione libera dei sistemi
discreti positivi evidenziandone le connessioni con le proprietà spettrali della matrice F
che conseguono dall’ipotesi di non negatività.
Probabilmente il risultato più importante sulle matrici positive è il teorema di Perron
Frobenius. L’interesse di questo risultato riguarda sia la teoria astratta delle matrici
positive - e più in generale degli operatori positivi - sia le sue applicazioni allo studio
dei sistemi positivi, delle catene di Markov, etc. Esso può essere formulato a diversi
livelli di generalità: la formulazione originale di Perron, limitata alle matrici strettamente
positive e alle matrici primitive, e che costituirà il nucleo di questo paragrafo, è stata estesa
da Frobenius alle matrici irriducibili, delle quali ci occuperemo nel paragrafo seguente.
Particolarmente interessante è la struttura dello “spettro periferico”, ovvero dell’insieme
degli autovalori a massimo modulo, le cui proprietà si estendono, in parte, dal caso delle
matrici irriducibili a quello delle matrici non negative generiche.

11.4.1 Spettro delle matrici strettamente positive

Premettiamo all’enunciazione del teorema di Perron alcune osservazioni che ci saranno
utili nella dimostrazione e di cui ci avvarremo anche nei paragrafi successivi.

Osservazione 1. Se v ∈ Cn denota un vettore complesso e |v| ∈ Rn
+ è il vettore costituito

dai moduli delle componenti di v,

v =

 v1
...
vn

 , |v| =

 |v1|
...
|vn|

 , (11.29)
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i trasformati dei due vettori secondo una matrice F ∈ Rn×n
+ verificano la diseguaglianza

F |v| =

 f11 . . . f1n

. . . . . . . . .
fn1 . . . fnn

 |v1|
...
|vn|

 =


∑
f1j |vj |

...∑
fnj |vj |

 ≥
 |
∑
f1jvj |
...

|
∑
fnj |vj

 = |Fv| (11.30)

Osservazione 2. Data una matrice (non necessariamente non negativa) F ∈ Rn×n,
conviene talvolta considerare, accanto agli autovettori “destri”, cioè ai vettori colonna
non nulli v soddisfacenti la condizione Fv = λv, gli autovettori “sinistri”, vettori riga
non nulli wT soddisfacenti la condizione wTF = λwT . La teoria della base di Jordan
si applica ancora, con gli ovvi aggiustamenti, e porta alla scomposizione dello spazio in
autospazi generalizzati sinistri.

• Esercizio 11.4.1 Si dimostri che la base “sinistra” di Jordan ha, per ciascun autovalore λ di F , lo
stesso numero di catene di autovettori generalizzati sinistri, della medesima lunghezza delle catene
di autovettori generalizzati destri.

] Suggerimento. Basta ricordare che la struttura “destra” di Jordan relativa all’autovalore λ dipende
dalla dimensione dei nuclei destri di (F−λI)ν , ν = 1, 2, . . . . Lo stesso vale per la struttura “sinistra”.
Si dimostri quindi che il nucleo destro e il nucleo sinistro di una matrice quadrata M hanno la
medesima dimensione.

Se wT
1 è un autovettore sinistro relativo all’autovalore µ e v1 è un autovettore destro

relativo all’autovalore λ, da wT
1 F = µwT

1 e Fv1 = λv1 si ricava

wT
1 Fv1 = µwT

1 v1 = λwT
1 v1; (11.31)

quindi, se µ 6= λ, deve essere
wT

1 v1 = 0. (11.32)

Anche nel caso in cui wT
s e vd siano autovettori generalizzati, sinistro, di ordine s e relativo

all’autovalore µ il primo, destro, di ordine d e relativo all’autovalore λ 6= µ il secondo, se
λ 6= µ si ha wT

s vd = 0. Per provarlo, assumiamo induttivamente che la conclusione valga
per tutte le coppie di autovettori generalizzati sinistri e destri la cui somma degli ordini
non ecceda k. Se wT

s e vd sono autovettori generalizzati soddisfacenti s+ d = k + 1, da

wT
s F = µwT

s + wT
s−1 con wT

0 = 0
Fvd = λvd + vd−1 con v0 = 0 (11.33)

e dall’ipotesi induttiva segue

wT
s Fvd = µwT

s vd + wT
s−1vd = µwT

s vd
= λwT

s vd + wT
s vd−1 = λwT

s vd (11.34)

Quindi vale10

wT
s vd = 0. (11.36)

10Il prodotto interno fra vettori (colonna) di Cn si definisce ponendo

〈z,y〉 := žTy. (11.35)

Esso ha le seguenti proprietà 〈z, z〉 = 0 ⇔ z = 0, 〈z,y〉 = 〈y, z〉∨, 〈λz,y〉 = λ̌〈z,y〉 e 〈z, λy〉 = λ〈z,y〉.
La condizione (11.36) wT

s vd = 0 equivale allora a 〈w̌s,vd〉 = 0, in cui w̌T
s è un autovettore generalizzato

sinistro relativo a µ̌. Quindi, nel prodotto interno definito da (11.35), se λ e µ sono autovalori distinti di
F , ogni autovettore generalizzato destro di F relativo a λ è ortogonale a ogni autovettore generalizzato
sinistro relativo a µ̌ 6= λ.
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Proposizione 11.4.1 [Matrici strettamente positive: teorema di Perron] Se
F ∈ Rn×n

+ è una matrice strettamente positiva, allora

i) [Autovettore e autovalore strettamente positivi] esistono un numero reale
λ0 > 0 e un vettore v0 >> 0 tali che

Fv0 = λ0v0; (11.37)

ii) [Massimalità di λ0] per ogni altro autovalore λ ∈ Λ(F ) si ha |λ| < λ0;

iii) [Spettro periferico] λ0 è radice semplice del polinomio caratteristico di F , ossia
è un autovalore con molteplicità algebrica 1;

iv) [Unicità dell’autovettore positivo e base di Jordan] v0 è, a meno di un
fattore di proporzionalità positivo, l’unico autovettore positivo della matrice F .
Rispetto alla base di Jordan, ogni vettore x > 0 ha componente positiva su v0;

v) [Monotonicità dell’autovalore dominante] Se F̄ è maggiore di F , ovvero F̄−
F > 0, il corrispondente autovalore positivo massimale λ̄0 soddisfa la diseguaglianza
λ̄0 > λ0.

Prova i) Sia S ⊂ Rn
+ l’insieme dei vettori non negativi e a somma delle componenti

unitaria (vettori di probabilità)

S :=
{

x =

 x1
...
xn

 :
n∑
i=1

xi = 1, xi ≥ 0, ∀i
}
. (11.38)

Indichiamo con (Fx)i la i-esima componente di Fx e definiamo la mappa

φ : S → S : x 7→ Fx∑n
i=1(Fx)i

(11.39)

Essa è definita correttamente: poiché x ha almeno una componente positiva e F è matrice
strettamente positiva, il vettore Fx è strettamente positivo, il denominatore

∑n
i=1(Fx)i

è un numero positivo e si verifica immediatamente che Fx/
∑n

i=1(Fx)i è un vettore di S.
Poiché l’insieme S è chiuso, limitato e convesso e φ è continua, si può applicare il teorema
del punto fisso di Brouwer-Tychonov (vedi Cap.3, Proposizione 3.1.2) e concludere che
esiste un vettore v0 ∈ S per cui risulta

v0 = φ(v0) =
Fv0∑n

i=1(Fv0)i
(11.40)

Ponendo

λ0 :=
n∑
i=1

(Fv0)i > 0, (11.41)

si ha subito la (11.37), mentre risulta v0 >> 0 perché Fv0 è strettamente positivo.
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ii) Applicando il ragionamento precedente alla matrice F T , si dimostra l’esistenza di
un autovettore w0 >> 0, corrispondente a un autovalore µ0 > 0

F Tw0 = µ0w0. (11.42)

Da (11.37) e (11.42) segue

µ0wT
0 v0 = wT

0 Fv0 = λ0wT
0 v0 (11.43)

e, risultando wT
0 v0 > 0, si ha µ0 = λ0.

Sia ora λ 6= λ0 un altro autovalore di F , eventualmente complesso, e sia u il corrispon-
dente autovettore, anch’esso eventualmente complesso. Tenuto conto di (11.30), si ha la
diseguaglianza

F |u| ≥ |Fu| = |λu| = |λ||u|. (11.44)

Premoltiplicando (11.44) per wT
0 si ottiene

λ0wT
0 |u| = wT

0 F |u| ≥ |λ|wT
0 |u| (11.45)

e, tenuto conto che wT
0 |u| è positivo, si conclude che ogni autovalore λ di F soddisfa la

diseguaglianza
|λ| ≤ λ0. (11.46)

Consideriamo infine la matrice F − εI, il cui spettro si ottiene sottraendo ε a tutti gli
autovalori di F . Se ε è positivo ma sufficientemente piccolo, la matrice F − εI rimane
strettamente positiva e ad essa si applicano i risultati finora ottenuti. In particolare, il
numero λ0 − ε rappresenta il massimo autovalore positivo di F − εI, mentre λ − ε è un
altro autovalore di F − εI, il cui modulo quindi non può eccedere λ0 − ε.
Se in (11.46) fosse |λ| = λ0, avremmo

|λ− ε| ≤ λ0 − ε = |λ| − ε (11.47)

e rappresentando i numeri complessi in
gioco come vettori del piano di Gauss,
(11.47) comporta che, nel triangolo i cui
lati sono i vettori λ, ε, λ−ε, il lato λ abbia
lunghezza non inferiore alla somma delle
lunghezze degli altri due. Ciò è possibile
solo se il triangolo è degenere: i vettori λ
e λ− ε devono essere paralleli ed equiversi
al vettore ε, che rappresenta un numero
reale positivo. Ma allora λ sarebbe reale
positivo e coinciderebbe con λ0.

-
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figura 11.1.2

iii) Proviamo dapprima che λ0 ha molteplicità geometrica 1, ovvero che l’autospazio Uλ0

ha dimensione 1. Se, oltre a v0 >> 0, in Uλ0 ci fosse un altro autovettore u0 linearmente
indipendente da v0, esso sarebbe reale perché tale è λ0, e potremmo scegliere α ∈ R
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in modo che la combinazione lineare v0 + αu0 sia un autovettore non negativo, ma non
strettamente positivo. Atteso che F è strettamente positiva, da

F (v0 + αu0) = λ0(v0 + αu0) (11.48)

segue una contraddizione, perché il membro di sinistra è strettamente positivo, mentre
non lo è quello di destra.
Supponiamo ora che la molteplicità algebrica di λ0 sia maggiore di 1. Allora esiste una
catena di Jordan relativa a λ0 di lunghezza almeno 2, e quindi un autovettore generalizzato
v(2)

0 di ordine 2 per cui risulta
v0 = (F − λ0I)v(2)

0 (11.49)

Premoltiplicando (11.49) per l’autovettore sinistro wT
0 >> 0T relativo a λ0, si perviene

all’assurdo
0 < wT

0 v0 = wT
0 (F − λ0I)v(2)

0 = 0. (11.50)

Quindi λ0 è radice semplice del polinomio caratteristico di F .

iv) Sia u > 0 un autovettore di F relativo a un arbitrario autovalore λ. Premoltipli-
cando Fu = λu >> 0 per wT

0 >> 0 e tenendo conto che wT
0 u è positivo, da

λ0wT
0 u = wT

0 Fu = λwT
0 u (11.51)

si ricava λ = λ0 e quindi, per il punto (iii), u = αv0, α ∈ R+, ovvero l’autovettore positivo
è (proporzionale a) v0.
Se rappresentiamo un generico vettore positivo x > 0 come combinazione lineare dei
vettori vi di una base di Jordan che include v0

x = α0v0 +
n−1∑
i=1

αivi, (11.52)

premoltiplichiamo primo e secondo membro per wT
0 e teniamo conto della (11.36), ottenia-

mo
0 < wT

0 x = α0wT
0 v0 (11.53)

che dimostra che ogni vettore positivo ha, nella base di Jordan, componente positiva
secondo v0.

v) Poichè F̄ è anch’essa strettamente positiva, per il punto (i) esistono λ̄0 > 0 e
v̄0 >> 0, autovalore e autovettore destro di F̄ , per cui vale la

λ̄0v̄0 = F̄ v̄0 = F v̄0 + (F̄ − F )v̄0.

Premoltiplicando per wT
0 , l’autovettore sinistro strettamente positivo di F , si ottiene allora

λ̄0wT
0 v̄0 = λ0wT

0 v̄0 + wT
0 (F̄ − F )v̄0

nella quale sono positivi entrambi gli scalari wT
0 v̄0 e wT

0 (F̄ − F )v̄0. Quindi deve essere
λ̄0 > λ0.

L’autovalore positivo λ0, di valore eguale al raggio spettrale di F , e l’autovettore cor-
rispondente v0 >> 0 si chiamano di solito autovalore e autovettore “di Perron” (o “di
Perron -Frobenius”).
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• Esercizio 11.4.2 La matrice strettamente positiva»
2 1
1 2

–
ha 3 come autovalore di Perron e

»
1
1

–
come corrispondente autovettore destro. Il secondo autovalore

è 1, cui corrisponde l’autovettore destro non positivo

»
1
−1

–
.

• Esercizio 11.4.3 Con riferimento alla (11.39), se cj :=

nX
i=1

[F ]ij , j = 1, 2, . . . , n è la somma degli

elementi della colonna j-esima della matrice F , si verifichi che, per ogni vettore di probabilità x ∈ S,
il denominatore

Pn
i=1(Fx)i è non inferiore a minj=1,...,n cj . Il risultato vale anche se F è una matrice

non negativa arbitraria?

11.4.2 Spettro delle matrici primitive

L’enunciato del teorema di Perron si estende senza alcuna modifica alle matrici pri-
mitive. La prova dipende dal fatto che la potenza di una matrice primitiva corrispondente
all’esponente di primitività è una matrice strettamente positiva.

Proposizione 11.4.2 [Matrici primitive: teorema di Perron] I punti i), ii), iii) iv)
e v) della proposizione 11.4.1 valgono anche quando F è una matrice primitiva.

Prova i) Supponiamo che l’esponente di primitività di F sia p > 1. Indichiamo con
λ̃0 > 0 l’autovalore di Perron della matrice strettamente positiva F p, con ṽ0 >> 0 il
corrispondente autovettore destro e con λ0 la radice aritmetica p-esima di λ̃0. Allora

0 = (F p − λp0I)ṽ0 = (F − λ0I)(F p−1 + λ0F
p−2 + . . .+ λp−1

0 I)ṽ0 (11.54)

garantisce che il vettore strettamente positivo v0 := (F p−1 + λ0F
p−2 + . . . + λp−1

0 I)ṽ0 è
autovettore di F relativo all’autovalore positivo λ0. Da

F pv0 = F p(F p−1 + λ0F
p−2 + . . .+ λp−1

0 I)ṽ0

= (F p−1 + λ0F
p−2 + . . .+ λp−1

0 I)F pṽ0

= (F p−1 + λ0F
p−2 + . . .+ λp−1

0 I)λp0ṽ0

= λp0(F p−1 + λ0F
p−2 + . . .+ λp−1

0 I)ṽ0 = λp0v0

segue che v0 è anch’esso, al pari di ṽ0, un autovettore positivo della matrice F p >>
0. Quindi v0 e ṽ0 differiscono per un fattore moltiplicativo positivo e ṽ0 è a sua volta
autovettore di F relativo a λ0. È poi immediato che F ha anche un autovettore sinistro
wT

0 � 0T , corrispondente all’autovalore λ0.

Per i punti ii) e iii) osserviamo anzitutto che lo spettro di F p si ottiene da quello di F
elevandone gli autovalori alla potenza p-esima. Se λ ∈ Λ(F )
- λ non può avere modulo maggiore di λ0. Altrimenti F p avrebbe un autovalore λp il cui
modulo eccede λ̃0;
- se |λ| = λ0, allora λ = λ0. Altrimenti F p avrebbe più autovalori di modulo λ̃0, oppure
l’autovalore di Perron λ̃0 avrebbe molteplicità algebrica maggiore di uno;
- se λ = λ0, esso ha molteplicità algebrica uno. Altrimenti avrebbe molteplicità maggiore
di uno l’autovalore di Perron λ̃0 della matrice F p.
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Per il punto iv), se u > 0 è autovettore di F relativo all’autovalore λ, allora è anche
autovettore di F p relativo all’autovalore λp = λ̃0. Essendo v0 autovettore destro di Perron
relativo a F p, risulta u = αv0, α ∈ R+.
D’altra parte, se si rappresenta un vettore x > 0 nella base di Jordan di F , x = α0v0 +∑n−1

i=1 αivi, vale ancora la (11.53) perché l’autovettore sinistro wT
0 di F relativo a λ0 è

strettamente positivo. Quindi x ha una componente positiva rispetto a v0 nella base di
Jordan di F .

Per il punto v) si procede come per le matrici strettamente positive: se ∆ := F̄ − F
è positiva, indichiamo con wT

0 � 0T e v̄0 � 0 rispettivamente l’autovettore di Perron
sinistro per F e quello di Perron destro per F̄ (anch’essa, ovviamente, primitiva). Da

λ̄0wT
0 v̄0 = wT

0

(
F̄ v̄0

)
= (wT

0 (F + ∆))v̄0 = λ0wT
0 v̄0 + wT

0 ∆v̄0,

attesa la stretta positività di wT
0 e di v̄0 segue

λ̄0 − λ0 =
wT

0 ∆v̄0

wT
0 v̄0

> 0.

In un sistema lineare positivo descritto da una matrice F primitiva, e in particolare
da una strettamente positiva, la dinamica libera a partire da qualsiasi condizione iniziale
positiva x(0) ha l’autovettore di Perron v0 come autovettore dominante. Infatti lo stato
iniziale ha una componente α positiva secondo v0 ed esiste un unico autovalore dominante
λ0, con molteplicità algebrica unitaria.
Pertanto il movimento libero può essere approssimato asintoticamente dalla successione

αv0, αλ0v0, αλ2
0v0, αλ3

0v0, . . .

Esempio 11.4.1 [Modello a classi di età] Riprendiamo il modello di Leslie considerato nel
primo capitolo. In assenza di fenomeni migratori la popolazione evolve secondo l’equazione:

x(t+ 1) =

26666664

α1 α2 . . . αn−1 αn
β1 0 . . . 0 0

0 β2

. . .
... 0

...
...

. . .
. . .

...
0 0 . . . βn−1 0

37777775x(t). (11.55)

Sotto opportune condizioni sui tassi di fertilità αi e di sopravvivenza βi la matrice F è primitiva,
quindi ammette un autovettore di Perron v0 strettamente positivo, con il quale il vettore di popola-
zione x(t) tende ad allinearsi al divergere di t, qualunque sia la distribuzione iniziale di popolazione.

Consideriamo alcuni semplici casi:

(i) tassi di sopravvivenza e di fertilità tutti positivi. È evidente che le matrici F 2, F 3, . . . hanno
strettamente positive rispettivamente le prime due righe, le prime tre righe, etc. Quindi Fn è
strettamente positiva e F è primitiva.

(ii) un tasso di sopravvivenza βi nullo, oppure il tasso di fertilità αn nullo. La (i+ 1)-esima riga o
l’ultima colonna sono nulle in F e in tutte le sue potenze. Quindi F non è irriducibile e non può
essere primitiva.

(iii) tassi di sopravvivenza tutti positivi, αn unico tasso di fertilità positivo. La matrice F è ir-
riducibile: ipotizzando unitari tutti i termini non nulli, si ottiene infatti

F =

»
0 I1

In−1 0

–
, F 2 =

»
0 I2

In−2 0

–
, F 3 =

»
0 I3

In−3 0

–
, . . . , Fn−1 =

»
0 In−1

I1 0

–
, Fn = In



470 CAPITOLO 11. SISTEMI DISCRETI POSITIVI

e quindi
Pn−1
i=1 F

i è strettamente positiva. La stessa conclusione vale se ai termini unitari si sosti-
tuiscono arbitrari elementi positivi. Chiaramente la matrice F non è primitiva.

(iv) tassi di sopravvivenza tutti positivi, αn e altri tassi di fertilità positivi. Per il punto precedente
F è irriducibile. È naturale domandarsi quali altri tassi di fertilità devono essere positivi affinché F
sia primitiva. Riprenderemo l’argomento più avanti.

Quando F è primitiva (ma anche quando F è irriducibile, come conseguenza della successiva propo-
sizione 11.5.1) la struttura dell’autovettore di Perron v0 = [ ξ1 ξ2 · · · ξn ]T si ricava molto
facilmente imponendo la condizione26666664

α1 α2 . . . αn−1 αn
β1 0 . . . 0 0

0 β2

. . .
... 0

...
...

. . .
. . .

...
0 0 . . . βn−1 0

37777775

2666664
ξ1
ξ2
ξ3
...
ξn

3777775 = λ0

2666664
ξ1
ξ2
ξ3
...
ξn

3777775
Eguagliando le componenti del membro di sinistra e di quello di destra e ponendo ξ1 = 1, si ottiene

v0 =

2666664
1

β1/λ0

β1β2/λ
2
0

...
β1β2 . . . βn−1/λ

n−1
0

3777775
L’autovalore dominante λ0 può essere interpretato come il “tasso naturale di crescita” della popo-
lazione. Infatti essa cresce esattamente secondo tale tasso quando il vettore iniziale di popolazione
è (proporzionale al)l’autovettore dominante v0; per popolazioni con distribuzione iniziale diversa
fra le classi, il vettore di popolazione tende asintoticamente ad allinearsi con il vettore v0 e quindi
a raggiungerne la distribuzione. Quando essa è raggiunta, in ogni intervallo di tempo le classi d’età
vengono moltiplicate tutte per il medesimo fattore λ0, cosicché la popolazione cresce - o diminuisce
- nel suo complesso, ma le proporzioni fra le classi di età rimangono inalterate.

11.5 Proprietà spettrali: la teoria di Frobenius

Nel caso di matrici irriducibili, il teorema di Perron viene sostituito da un enunciato più
articolato, dovuto a Frobenius: lo spettro “periferico”, ovvero l’insieme degli autovalori
aventi modulo eguale al raggio spettrale, può non contenere un solo elemento, ma ha
una configurazione assai particolare, come assai particolare è la struttura degli autovettori
corrispondenti agli autovalori periferici, secondo quanto sarà precisato nel corollario 11.5.3.

11.5.1 Spettro delle matrici irriducibili

Proposizione 11.5.1 [Matrici irriducibili: teorema di Frobenius-Perron] Se
F ∈ Rn×n

+ è una matrice irriducibile, allora

i) [Autovettore e autovalore strettamente positivi] esistono un numero reale
λ0 > 0 e un vettore v0 >> 0 tali che

Fv0 = λ0v0; (11.56)

ii) [Massimalità di λ0] per ogni altro autovalore λ ∈ Λ(F ) si ha |λ| ≤ λ0;
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iii) [Spettro periferico e struttura generale dello spettro] ogni autovalore
λ con |λ| = λ0 è radice semplice del polinomio caratteristico; inoltre esiste un intero
positivo η, detto “indice di imprimitività di F”, per cui

- gli autovalori a modulo λ0 sono tutti e soli i numeri complessi dati da

λ0e
j 2πk
η , k = 0, 1, . . . , η − 1 , (11.57)

- l’intero spettro di F è invariante (molteplicità incluse) rispetto alla moltiplicazione

per e
j 2π
η ;

iv) [Unicità dell’autovettore positivo e base di Jordan] v0 è, a meno di un
fattore di proporzionalità positivo, l’unico autovettore positivo della matrice F .
Rispetto alla base di Jordan, ogni vettore x > 0 ha componente positiva su v0;

v) [Monotonicità dell’autovalore dominante] Se F̄ è maggiore di F , ovvero
F̄ − F > 0, il corrispondente autovalore positivo λ̄0 soddisfa la diseguaglianza λ̄0 >
λ0.

Prova i) Per la proposizione 11.2.2, la matrice

F̃ :=
n−1∑
h=0

F h

è strettamente positiva, quindi esistono un autovettore ṽ0 >> 0 e un autovalore µ0 > 0
soddisfacenti

F̃ ṽ0 = µ0ṽ0. (11.58)

Essendo F̃ ṽ0 = ṽ0 + F ṽ0 + . . . + Fn−1ṽ0 > ṽ0, l’autovalore µ0 è maggiore di 1 ed esiste
un unico numero positivo λ0 per cui risulta

µ0 = 1 + λ0 + . . .+ λn−1
0 .

Se riscriviamo la (11.58) nella forma

0 =
n−1∑
h=0

F hṽ0 −
n−1∑
h=0

λh0 ṽ0

= (F − λ0I)ṽ0 + (F 2 − λ2
0I)ṽ0 + . . . (Fn−1 − λn−1

0 I)ṽ0

= (F − λ0I)
[
I + (F+λ0I) + . . .+ (Fn−2+λ0F

n−3+. . .+λn−2
0 I)

]
ṽ0 (11.59)

vediamo che v0 :=
[
I + (F + λ0I) + . . .+ (Fn−2 + λ0F

n−3 + . . .+ λn−2
0 I)

]
ṽ0 >> 0 è un

autovettore strettamente positivo di F , corrispondente all’autovalore positivo λ0.

ii) Poiché F T è irriducibile, esistono un vettore w0 >> 0 e un numero reale ν0 > 0
soddisfacenti F Tw0 = νw0, e procedendo come per il punto (ii) del teorema di Perron, si
verifica l’uguaglianza ν0 = λ0. Quindi wT

0 è autovettore sinistro di F relativo a λ0, e da
Fu = λu, 0 6= u ∈ Cn, segue
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F |u| ≥ |Fu| = |λu| = |λ||u| e λ0wT
0 |u| = wT

0 F |u| ≥ |λ|wT
0 |u|.

Ciò implica λ0 ≥ |λ|.

iv) La prima parte è immediata: se u > 0 fosse un autovettore positivo di F non
proporzionale a v0, sia u che v0 sarebbero autovettori della matrice strettamente positiva
F̃ =

∑n−1
h=0 F

h, contraddicendo il quarto punto del teorema di Perron.

iii) Se λ0 avesse molteplicità algebrica maggiore di 1 come autovalore di F , si vede
immediatamente (p.es. dalla forma di Jordan di F ) che 1 + λ0 + . . .+ λn−1

0 = µ0 sarebbe
autovalore con molteplicità maggiore di 1 per la matrice F̃ =

∑n−1
h=0 F

h, ancora una volta
in contraddizione con il teorema di Perron.
Sia ora λ un autovalore “periferico” di F , soddisfacente cioè la condizione λ = ejφλ0, e sia
u ∈ Cn un autovettore corrispondente. Da Fu = λu segue che in

F |u| ≥ |Fu| = |ejφ̄λ0u| = λ0|u| (11.60)

non può valere il segno di diseguaglianza. Altrimenti otterremmo l’assurdo

wT
0 λ0|u| = wT

0 F |u| > λ0wT
0 |u|

Quindi |u| è un autovettore positivo di F corrispondente all’autovalore λ0 e per la prima
parte del punto (iv) è proporzionale a v0.
Supponiamo ora che ejφ̄λ0 sia l’autovalore periferico a fase positiva minima e sia u(1)

l’autovettore corrispondente. Moltiplicando eventualmente u(1) per una costante com-
plessa non nulla, non è restrittivo supporre, che |u(1)| e v0 coincidano

|u(1)| = v0 (11.61)

e che coincidano altres̀ı la prima componente di u(1) e la prima componente di v0.
Esistono allora numeri complessi a modulo unitario ejφ1 = 1, ejφ2 , . . . , ejφn per cui risulta

u(1) =


1

ejφ2

. . .
ejφn

v0 = Dv0 (11.62)

e quindi
Fu(1) = ejφ̄λ0u(1)

FDv0 = ejφ̄λ0Dv0

e−jφ̄D−1FDv0 = λ0v0 = Fv0[
F − e−jφ̄D−1FD

]
v0 = 0 (11.63)

Nella matrice F −e−jφ̄D−1FD l’elemento generico in posizione (h, k) ha struttura fhk(1−
ejψhk), quindi la sua parte reale è positiva o nulla, ed è nulla solo nel caso in cui sia
nullo fhk(1 − ejψhk). Poiché v0 è strettamente positivo e la parte reale della matrice
F − e−jφ̄D−1FD è non negativa, (11.63) comporta che la parte reale della matrice sia
nulla. Allora possiamo concludere che è nulla l’intera matrice, ossia

F = e−jφ̄D−1FD. (11.64)
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Il polinomio caratteristico di F coincide con quello della matrice simile D−1FD = ejφ̄F ,
quindi

det(zI − ejφ̄F ) = det(zI − F ), (11.65)

da cui segue che le radici del polinomio caratteristico di F sono invarianti (molteplicità
inclusa) rispetto alla moltiplicazione per e±jφ̄.
Di conseguenza:

• λ0e
jkφ̄ è autovalore di F per ogni k ∈ Z e, come λ0, è radice semplice del polinomio

caratteristico;

• posto φ̄ = 2απ, il numero α deve essere razionale, altrimenti F avrebbe infiniti
autovalori distinti, e della forma α = 1/η, con η intero positivo opportuno, altrimenti
non sarebbe soddisfatta l’ipotesi che la fase φ̄ sia la minima fra le fasi positive degli
autovalori periferici (si veda il successivo Esercizio);

• gli autovalori periferici di F hanno tutti struttura

λ0e
jkφ̄, k = 0, 1, . . . , η − 1;

se infatti λ0e
jψ appartiene allo spettro periferico di F , ad esso appartengono anche

λ0e
j(ψ±kφ̄) per ogni intero k > 0, e se ψ non fosse multiplo intero di φ̄, uno fra gli

autovalori periferici
λ0e

jψ, λ0e
j(ψ±φ̄), λ0e

j(ψ±2φ̄), . . .

avrebbe fase positiva, ma minore di φ̄.

iv) Per la prova della seconda parte, relativa alle componenti di un vettore x > 0
rispetto alla base di Jordan v0,v1, . . .vn−1,

x = α0v0 + α1v1 + . . .+ αn−1vn−1 (11.66)

basta osservare, come per il teorema di Perron, che il prodotto wT
0 vi è nullo per ogni

autovettore generalizzato vi diverso da v0, mentre wT
0 x e wT

0 v0 sono entrambi positivi.

v) Anche in questo caso, si utilizza l’esistenza di un autovettore sinistro wT
0 e di un

autovettore destro v0 strettamente positivi, relativi all’autovalore λ0 e si procede come
nel caso delle matrici strettamente positive.

• Esercizio 11.5.1 Se φ̄ =
p

q
2π, con p e q coprimi e p, q > 1, allora esiste k per cui e

j2πp
q

k
= e

j2π
q .

] Suggerimento: per la coprimalità di p e q, esistono interi k e h per cui è soddisfatta l’equazione

diofantea kp+ hq = 1. Inoltre k si può sempre supporre positivo. Quindi k
p

q
+ h =

1

q

Corollario 11.5.2 La matrice irriducibile F > 0 è primitiva se e solo se il suo indice di
imprimitività η vale 1.
Prova Se η > 1, F possiede più di un autovalore a modulo λ0, quindi non può essere
primitiva.
Viceversa, se η = 1, lo spettro periferico di F comprende solo l’autovalore di Perron λ0,
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che pertanto è dominante. Rappresentando i vettori canonici ei, i = 1, 2, . . . , n sulla base
di Jordan di F, da (11.66) si ottiene

ei = α
(i)
0 v0 + α

(i)
1 v1 + . . .+ α

(i)
n−1vn−1, α

(i)
0 > 0, i = 1, 2, . . . , n,

e quindi

F hei = λh0

[
α

(i)
0 v0 + α

(i)
1

F hv1

λh0
+ . . .+ α

(i)
n−1

F hvn−1

λh0

]
, α

(i)
0 > 0, i = 1, 2, . . . , n.

(11.67)
I termini F hvj/λh0 , j = 1, 2, . . . , n − 1, sono infinitesimi al divergere di h, poiché gli
autovettori (generalizzati) vj sono relativi ad autovalori con modulo minore di λ0. Quindi
per h abbastanza grande e per i = 1, 2, . . . , n, i vettori α(i)

0 v0, strettamente positivi e

indipendenti da h, superano il modulo dei vettori (reali) α(i)
1

F hv1

λh0
+ . . .+ α

(i)
n−1

F hvn−1

λh0
.

Si può allora concludere che tutti i vettori F hei, i = 1, 2, . . . , n, sono strettamente positivi
e la matrice F h è strettamente positiva.

Un’interessante conseguenza di (11.62) è la possibilità di ottenere dall’autovettore v0 di
Perron tutti gli autovettori corrispondenti agli autovalori periferici di una matrice ir-
riducibile, sottoponendo le componenti di v0 alla moltiplicazione per opportune radici
η-esime dell’unità.

Corollario 11.5.3 [Autovettori dello spettro periferico] Sia F ∈ Rn×n
+ una

matrice positiva irriducibile con indice di imprimitività η > 1 e sia φ̄ = 2π/η, in modo che
le potenze di

θ = ejφ̄ := e
j 2π
η

forniscano tutte le radici η-esime dell’unità. Se λ0 > 0 e v0 >> 0 sono rispettivamente
l’autovalore positivo massimale e l’autovettore corrispondente,

i) esiste una matrice diagonale

D = diag{1, ejφ2 , . . . , ejφn} (11.68)

tale che per ogni h
u(h) = Dhv0

è autovettore corrispondente all’autovalore periferico θhλ0;

ii) gli elementi diagonali di D appartengono al gruppo delle radici η-esime dell’unità e
ogni radice η-esima dell’unità coincide con uno almeno degli elementi diagonali di
D.

prova Nella dimostrazione del teorema di Frobenius-Perron si è provata l’esistenza di una
matrice diagonale D, avente la struttura specificata in (11.68), tale che

• u(1) := Dv0 è autovettore corrispondente all’autovalore periferico θλ0

F (Dv0) = θλ0(Dv0). (11.69)
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• vale la (11.64), che per comodità riscriviamo nella forma

θDF = FD. (11.70)

Se assumiamo induttivamente che il vettore u(h) := Dhv0 soddisfi la Fu(h) = θhλ0u(h), e
quindi sia autovettore di F relativo all’autovalore θhλ0, allora il vettore u(h+1) := Dh+1v0

soddisfa

Fu(h+1) = F [Dh+1v0] = [FD][Dhv0] = [θDF ][Dhv0]

= [θD][F (Dhv0)] = [θD][Fu(h)] = [θD][θhλ0u(h)] = θh+1λ0[Dh+1v0]

= θh+1λ0u(h+1), (11.71)

che dimostra il punto (i).

Per il successivo punto (ii), osserviamo che Dηv0 è un autovettore corrispondente all’auto-
valore λ0, quindi per il teorema di Frobenius-Perron è proporzionale a v0, ovvero Dηv0 =
αv0, e ciò implica

Dη = αIn = In, (11.72)

atteso che il primo elemento della diagonale di D vale 1. Quindi tutti gli elementi diagonali
di D sono radici η-esime dell’unità e le componenti di u(h) = Dhv0 differiscono da quelle
di v0 per fattori che sono radici η-esime dell’unità.
Gli autovettori u(h) = Dhv0, h = 0, 1, . . . , η − 1, essendo relativi ad autovalori distinti,
sono linearmente indipendenti. Allora sono linearmente indipendenti le matrici diagonali
D0 = I,D,D2, . . . , Dη−1, e ciò è possibile solo se la diagonale di D contiene (almeno) η
elementi distinti, quindi tutte le radici η-esime dell’unità.

11.5.2 Forma ciclica di Frobenius

Un’ulteriore conseguenza della formula (11.64), dimostrata nel teorema di Frobenius,
riguarda la possibilità di ridurre per cogredienza una matrice irriducibile ad una strut-
tura “ciclica” a blocchi, di cui discuteremo nel seguito alcune notevoli proprietà.
Corollario 11.5.4 [Forma ciclica di Frobenius di una matrice irriducibile] Se
F è irriducibile con indice di imprimitività η > 1, esiste una matrice di permutazione Π
tale che

ΠTFΠ =


0 F̄1,2 0 . . . 0
0 0 F̄2,3 . . . 0

. . .

0 0 0 . . . F̄η−1,η

F̄η,1 0 0 . . . 0

 , (11.73)

dove i blocchi nulli sulla diagonale principale sono matrici quadrate.

Prova Sia D la matrice diagonale (11.68), i cui elementi diagonali sono, per il corollario
11.5.3, tutte e sole le radici η-esime dell’unità. Sia Π una matrice di permutazione che
riordina per cogredienza gli elementi diagonali di D in modo che lungo la diagonale si
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succedano prima tutti gli elementi unitari, in numero di ν1, poi tutti gli elementi θ := ejφ̄,in
numero di ν2, poi tutti gli elementi θ2, etc.

D̄ = ΠTDΠ =


Iν1

Iν2θ
Iν3θ

2

. . .
Iνηθ

η−1

 (11.74)

Partizioniamo in modo conforme la matrice

F̄ := ΠTFΠ =



F̄11 F̄12 F̄13 . . . F̄1η

F̄21 F̄22 F̄23 . . . F̄2η

F̄31 F̄32 F̄33 . . . F̄3η

. . .

F̄η1 F̄η2 F̄η3 . . . F̄ηη

 (11.75)

e utilizziamo (11.64), (11.74) e (11.75) :

F̄ = ΠTFΠ = ΠT (θ−1D−1FD)Π = θ−1(ΠTD−1Π)(ΠTFΠ)(ΠTDΠ) = θ−1D̄−1F̄ D̄

=



θ−1F̄11 F̄12 θF̄13 . . . θη−2F̄1η

θ−2F̄21 θ−1F̄22 F̄23 . . . θη−3F̄2η

θ−3F̄31 θ−2F̄32 θ−1F̄33 . . . θη−4F̄3η

. . .

F̄η1 θF̄η2 θ2F̄η3 . . . θη−1F̄ηη

 (11.76)

Confrontando (11.75) con (11.76) si ha subito che i tutti i blocchi di F̄ moltiplicati per
potenze di θ diverse da θ0 sono nulli: quindi F̄ è in forma ciclica di Frobenius.

• Esercizio 11.5.2 [Potenze della forma ciclica] Sia F̄ la forma ciclica di Frobenius (11.73) di
una matrice irriducibile F con indice di imprimitività η > 1 e autovalore massimale λ0. Allora

(i) i blocchi diagonali sono diversi da zero solo in corrispondenza alle potenze F̄ η, F̄ 2η, . . .;

(ii) F̄ η è diagonale a blocchi, con blocchi diagonali (quadrati!)

F̄1,2F̄2,3 · · · F̄η,1 , F̄2,3F̄3,4 · · · F̄1,2 , . . . , F̄η,1F̄1,2 · · · F̄η−1,η;

(iii) tutti i blocchi diagonali del punto (ii) sono matrici irriducibili;

(iv*) tutti i blocchi diagonali del punto (ii) sono matrici primitive.

] Suggerimento. (iii) Se i blocchi diagonali non fossero tutti irriducibili, in qualche posizione (r, s)
essi, e quindi tutte le potenze di F̄ , avrebbero un elemento nullo.

(iv) Siano A ∈ Rp×q e B ∈ Rq×p. Applicando un procedimento già impiegato nel paragrafo 6.4, da

det

„»
zIp A
0 Iq

– »
Ip −A
−B zIq

–«
= det

»
zIp −AB 0
−B zIq

–
= zq det(zIp −AB)

det

„»
Ip −A
−B zIq

– »
zIp A
0 Iq

–«
= det

»
zIp 0
−Bz zIq −BA

–
= zp det(zIq −BA).
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segue immediatamente
zq det(zIp −AB) = zp det(zIq −BA).

Il risultato viene poi esteso alle permutazioni cicliche del prodotto A1A2 · · ·Ar di r matrici, con A1

di dimensioni p× ν1 , A2 di dimensioni ν1 × ν2, . . . , Ar di dimensioni νr−1 × p.
Gli η blocchi diagonali irriducibili del punto (ii) hanno allora i medesimi autovalori non nulli, quindi,
in particolare, il medesimo autovalore di Perron-Frobenius, coincidente con λη0 . Se qualcuno di essi
non fosse primitivo, avrebbe anche qualche altro autovalore periferico, del tipo λη0e

jφ, φ ∈ (0, 2π),
quindi in F̄ η il numero di autovalori con modulo λη0 sarebbe maggiore di η e F̄ avrebbe un numero
di autovalori a modulo λ0 maggiore dell’indice di imprimitività.

Con riferimento alla base “permutata”, in cui vale la forma ciclica di Frobenius, un vettore
viene trasformato da F̄ come segue:

x1

x2
...

xη−1

xη

 7→


0 F̄1,2 0 . . . 0
0 0 F̄2,3 . . . 0

. . .
0 0 0 . . . F̄η−1,η

F̄η,1 0 0 . . . 0




x1

x2
...

xη−1

xη

 =


F̄1,2x2

F̄2,3x3
...

F̄η−1,ηxη
F̄η,1x1

 .

L’applicazione di F̄ opera sulle componenti del secondo blocco del vettore x trasforman-
dole in componenti del primo, . . ., sulle componenti dell’ultimo blocco trasformandole
in componenti del penultimo, su quelle del primo blocco trasformandole in componenti
dell’ultimo.
Inoltre, come conseguenza della primitività dei blocchi diagonali di F̄ η (cfr Esercizio
11.5.1), la matrice diagonale a blocchi F tη per t abbastanza grande ha blocchi diagonali
strettamente positivi, quindi il vettore F̄ tηx è costituito soltanto da blocchi strettamente
positivi e da blocchi nulli, a seconda che i blocchi omologhi di x siano o non siano di-
versi da zero. Infine, per k ≥ tη, blocchi strettamente positivi e blocchi nulli si spostano
ciclicamente, sulle η posizioni:

0
+
+
...
0
+
+


7→



+
+
...
0
+
+
0


7→



+
...
0
+
+
0
+


7→ . . .

L’invarianza delle radici del polinomio caratteristico di una matrice irriducibile rispetto
alla moltiplicazione per ejφ̄, espressa da (11.65), implica che, in corrispondenza ad ogni
autovalore non nullo λ ∈ Λ(F ), i numeri

λ, λejφ̄, λej2φ̄, . . . , λej(η−1)φ̄. (11.77)

sono autovalori di F , con la medesima molteplicità di λ, Il seguente corollario 11.5.5 è
allora conseguenza dell’identità

zη − λη = (z − λ)(z − λejφ̄) · · · (z − λej(η−1)φ̄). (11.78)
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Corollario 11.5.5 [Caratterizzazioni dell’indice di imprimitività ] Sia F ∈ Rn×n
+

una matrice positiva irriducibile, con grafo di influenza G, e sia

det(zI − F ) = cn0z
n0 + cn1z

n1 + . . .+ cnk−2
znk−2 + cnk−1

znk−1 + zn (11.79)

il suo polinomio caratteristico, con

n0 < n1 < . . . < nk−2 < nk−1 < nk = n e cni 6= 0, i = 0, 1, . . . , k − 1, k.

Allora coincidono

(i) il numero degli autovalori periferici (i.e. l’indice di imprimitività η),
(ii) il massimo comune divisore delle differenze di grado ni − ni−1

MCD{n1 − n0 , n2 − n1 , . . . , nk−1 − nk−2 , nk − nk−1}. (11.80)
(iii) il massimo comun divisore delle lunghezze dei cicli di G,

Prova Sia η l’indice di imprimitività di F .
In corrispondenza a ciascun autovalore λ 6= 0 lo spettro di F comprende gli elementi
di (11.77), tutti con la medesima molteplicità di λ. Per ciascuna η-upla di autovalori
non nulli, con il medesimo modulo e con fase come in (11.77), si possono raggruppare i
corrispondenti fattori del polinomio caratteristico, ottenendo la fattorizzazione

det(zIn − F ) = zn0(zη − λη0)(zη − λη1)(zη − λη2) . . . .

Quindi il polinomio caratteristico è il prodotto di zn0 per un polinomio in zη e l’indice di
imprimitività η è divisore comune delle differenze n1−n0, n2−n1, . . . , nk−1−nk−2, n−nk−1.
È poi evidente che η rappresenta il divisore comune massimo di tali differenze, altrimenti
l’insieme degli zeri del polinomio (11.78) sarebbe invariante per rotazioni intorno all’origine
del piano complesso di ampiezza inferiore a φ̄ = 2π

η , il che non vale per lo spettro periferico
di F . Quindi η coincide con il MCD dato da (11.80).
Ogni ciclo di G ha lunghezza multipla di η. Infatti, riferendoci alla partizione dei vertici che
dà luogo alla forma ciclica di Frobenius F̄ , è chiaro che ogni cammino del grafo ha inizio
in un vertice appartenente a uno degli η sottoinsiemi della partizione, e può rivisitare il
sottoinsieme (e quindi il vertice di inizio) soltanto dopo aver compiuto un numero di passi
multiplo di η. Quindi il MCD z delle lunghezze dei cicli di G è un multiplo di η. D’altra
parte, si è visto che, come conseguenza dell’Esercizio 11.5.1, se t è abbastanza grande, F̄ tη

ha diagonale strettamente positiva, quindi per ogni i risulta [F̄ tη]ii > 0 e [F̄ (t+1)η]ii > 0,
e z deve dividere sia tη che (t+ 1)η. Perciò z coincide con η.

Esempio 11.5.1 [Onde di popolazione nel modello a classi di età] Nell’ipotesi che i tassi
di sopravvivenza βi siano tutti positivi, la matrice di Leslie (11.55) è irriducibile se e solo se αn > 0.
Sviluppando il determinante di zI−F secondo l’ultima colonna, si vede che il polinomio caratteristico
soddisfa la relazione

det

2666666664

z − α1 −α2 . . . −αn−1 −αn
−β1 z . . . 0 0

0 −β2 z . . . 0

...
...

. . .
. . .

...

0 0 . . . −βn−1 z

3777777775
= −β1 · · ·βn−1αn+z det

2666664
z − α1 −α2 . . . . . . −αn−1

−β1 z . . . . . . 0
0 −β2 z . . . 0
...

...
. . .

. . .

0 . . . . . . −βn−2 z

3777775
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e può quindi essere espresso nella forma

det(zIn − F ) = −(αn

n−1Y
i=1

βi)−(αn−1

n−2Y
i=1

βi)z−(αn−2

n−3Y
i=1

βi)z
2−. . .−(α2β1)zn−2−α1z

n−1+zn.

Se ricordiamo che, per ipotesi, αn e tutti i βi sono positivi e se indichiamo con

αν1 > 0, αν2 > 0, . . . , ανk > 0, con ν1 < ν2 < . . . < νk = n

i tassi di natalità positivi, possiamo riscrivere il polinomio caratteristico ponendo ᾱνh = ανh
Qνh−1
i=1 βi

det(zIn − F ) = −ᾱn − ᾱνk−1z
n−νk−1 − . . .− ᾱν2z

n−ν2 − ᾱν1z
n−ν1 + zn

Per il corollario 11.5.5, l’indice di imprimitività di F si può calcolare a partire dai gradi dei monomi
non nulli di det(zIn − F )

η = M.C.D.{n− (n− ν1) , (n− ν1)− (n− ν2) , . . . , (n− νk−1)− (n− νk)}
= M.C.D.{ν1 , ν2 − ν1 , ν3 − ν2 , . . . , νk − νk−1}
= M.C.D.{ν1, ν2, ν3, . . . , νk} (11.81)

e la matrice di Leslie è primitiva se e solo (11.81) è unitario.
Quando l’indice di imprimitività η di F è maggiore di 1, si innescano “onde di popolazione”, ovvero
distribuzioni di popolazione periodiche (se λ0 = 1) o pseudoperiodiche.
Se v0 è l’autovettore di Perron, poniamo θ := ej2π/η e denotiamo con u(h) =Dhv0, h = 0, 1, . . . , η−1,
gli autovettori corrispondenti agli autovalori periferici θhλ0. Gli altri autovettori e autovettori
generalizzati u(h), h = η, η+ 1, . . . , n− 1, della base di Jordan sono relativi ad autovalori a modulo
minore di λ0.
Qualsiasi sia la popolazione iniziale x(0) = x0 =

Pη−1
h=0 αhu

(h) +
Pn
k=η αhu

(h), la popolazione x(t)
al divergere del tempo soddisfa

x(t)

λt0
'
η−1X
h=0

αhu
(h)θht.

Poichè risulta θht = θht+νη per ogni intero ν, se t è sufficientemente grande si ha

x(t+ η)

λt+η0

'
η−1X
h=0

αhu
(h)θht ' x(t)

λt0

e quindi x(t+ η) ' λη0x(t).
Sempre per grandi valori di t, in ciascun pseudoperiodo di durata η i vettori di stato descritti dalla
popolazione sono proporzionali ai vettori

η−1X
h=0

αhu
(h),

η−1X
h=0

αhu
(h)θh,

η−1X
h=0

αhu
(h)θ2h, . . . ,

η−1X
h=0

αhu
(h)θ(η−1)h,

quindi la distribuzione della popolazione nelle n classi di età ritorna ciclicamente (ogni η istanti)
nella medesima configurazione. D’altra parte il livello della popolazione complessiva (i.e. la somma
degli individui presenti nelle n classi di età) si accresce in un periodo secondo un fattore pari λη0 .
Si noti che, sebbene il vettore di popolazione e il livello complessivo di popolazione dopo un periodo
siano pari a λη0 volte il vettore e il livello raggiunti all’inizio del periodo, non è vero che in un passo
il vettore o il livello di popolazione si accrescano di un fattore pari a λ0 rispetto a quelli del passo
precedente.

11.5.3 Ulteriori proprietà dell’autovalore massimale

Abbiamo visto che l’autovalore λ0 è il raggio spettrale ρ(F ) della matrice F , ossia il raggio
del più piccolo cerchio con centro nell’origine di C in grado di contenere lo spettro Λ(F ).
Esso può essere visto anche come l’elemento di separazione fra le due regioni [0, λ0) e
(λ0,+∞) dell’asse R+. Verificheremo che in ciascuna delle due regioni
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- la “matrice risolvente” (λI − F )−1 ha proprietà di segno diverse;
- il vettore trasformato Fx di un vettore positivo x può maggiorare (risp. essere

maggiorato da) tutte le componenti di λx.
Nella discussione utilizzeremo (la versione matriciale di) un risultato di C.Neumann.
Se M = [mi,j ] è una matrice in Cn×n, indichiamo con |M | la matrice non negativa [|mi,j |] i
cui elementi sono i moduli degli elementi di M , e diciamo che una serie di matrici complesse∑∞

i=0Mi converge assolutamente se la serie di matrici non negative
∑∞

i=0 |Mi| converge
componente per componente.

Lemma 11.5.6 [Risolvente e serie di C.Neumann] Se F ∈ Cn×n e ρ(F ) = max{|λi| :
λi ∈ Λ(F )}, allora per ogni numero complesso λ con |λ| > ρ(F ) la serie (di Neumann)

∞∑
i=0

F i

λi+1
(11.82)

converge assolutamente e la sua somma è (λIn − F )−1, la matrice “risolvente di F”.

Prova Se M e N appartengono a Cn×n, vale la diseguaglianza |MN | ≤ |M ||N |.
Verifichiamo dapprima che, se ρ(F ) < 1, allora la serie In + |F | + |F 2| + . . . converge.
Infatti i modi del sistema11 x(t+ 1) = Fx(t) sono convergenti, quindi, fissato un numero
positivo ε < 1/n, esiste un esponente k per cui tutti gli elementi di F k sono in modulo
minori di ε e dalla precedente diseguaglianza segue

|F k| < ε
(
1n1Tn

)
,

|F 2k| ≤ |F k||F k| < ε2n
(
1n1Tn

)
=

1
n

(εn)2
(
1n1Tn

)
. . . . . .

|F νk| ≤ |F k||F (ν−1)k| < ενnν−1
(
1n1Tn

)
=

1
n

(εn)ν
(
1n1Tn

)
.

Ma allora si ha
∞∑
i=0

|F i| ≤ (In + |F |+ . . .+ |F k−1|)
∞∑
ν=0

|F νk|

≤ (In + |F |+ . . .+ |F k−1|)
[
In +

εn

n

(
1 + εn+ (εn)2 + . . .

)(
1n1Tn

) ]
e la convergenza della serie

∑∞
i=0 |F i| consegue della condizione εn < 1. È ovvio che, per

ogni coppia di indici (r, s), nella serie
∑∞

i=0 F
i gli elementi in posizione (r, s) convergono

assolutamente, quindi convergono.
Supponiamo ora che il raggio spettrale di F abbia un generico valore non negativo e che
λ sia un numero complesso tale che |λ| > ρ(F ). Il raggio spettrale di F/λ è minore di 1,
quindi la serie

∑∞
i=0(F/λ)i converge assolutamente. D’altra parte risulta

In = (In −
F

λ
)
∞∑
i=0

(
F

λ

)i
= (λIn − F )λ−1

∞∑
i=0

(
F

λ

)i
= (λIn − F )

∞∑
i=0

F i

λi+1
,

quindi la somma della serie (11.82) fornisce (λIn − F )−1.

11Il fatto che il sistema evolva sul campo complesso non modifica le conclusioni circa la convergenza dei
modi.
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Proposizione 11.5.7 [Proprietà estremali dell’autovalore λ0] Sia F ∈ Rn×n
+

una matrice irriducibile e sia λ0 > 0 il suo autovalore di Perron-Frobenius. Allora

i) se λ > λ0 la matrice (λIn − F )−1 è strettamente positiva;
se 0 ≤ λ < λ0 la matrice (λIn−F )−1, ove esista, contiene qualche elemento negativo;

ii) se x > 0 e λ ∈ R+ , la condizione Fx > λx implica λ0 > λ

la condizione Fx < λx implica λ0 < λ.

iii) λ0 si può caratterizzare come

λ0 = sup{λ ∈ R+ : Fx ≥ λx, per qualche x > 0} (11.83)
= inf {λ ∈ R+ : Fx ≤ λx, per qualche x > 0} (11.84)

Prova i) Se λ > λ0, la serie di C.Neumann converge e si ha

(λI − F )−1 =
∞∑
i=0

F i

λi+1
.

Quindi (λI − F )−1 è positiva in quanto limite di somme di matrici positive. Inoltre, per
l’irriducibilità di F è strettamente positiva la somma parziale

∑n−1
i=0 F

iλ−i−1, quindi anche
la somma della serie.
Se 0 ≤ λ < λ0 e v0 >> 0 è l’autovettore di Perron-Frobenius corrispondente a λ0, da
Fv0 = λ0v0 >> λv0 segue n := (λIn−F )v0 << 0. Poiché il prodotto (λIn−F )−1n = v0 è
strettamente positivo, la matrice (λIn−F )−1 deve contenere almeno un elemento negativo
in ogni sua riga.
ii) Se wT

0 >> 0T è l’autovettore sinistro di Perron-Frobenius, Fx > λx implica

λ0wT
0 x = wT

0 Fx > wT
0 λx (11.85)

e quindi λ0 > λ. Analogamente si verifica che Fx < λx implica λ0 < λ.
iii) Risultando Fv0 = λ0v0, chiaramente λ0 ∈ {λ : Fx ≥ λx per qualche x > 0}. Quindi

λ0 ≤ sup{λ : Fx ≥ λx per qualche x > 0}. (11.86)

Se nella diseguaglianza (11.86) valesse il segno “<”, esisterebbero λ̃ > λ0 e x > 0 per
cui si avrebbe Fx ≥ λ̃x e quindi12 Fx > λ̃x, in contraddizione con il punto (ii). Ciò
dimostra (11.83). La (11.84) si dimostra in modo analogo, ricorrendo alla condizione
Fx < λx⇒ λ0 < λ del punto (ii).

Corollario 11.5.8 [Caratterizzazione max-min di λ0 e v0] Se F è irriducibile, e se
λ0 > 0 e v0 >> 0 sono l’autovalore e l’autovettore di Perron-Frobenius di F , allora

max
x>>0

(
min
i

(Fx)i
xi

)
= λ0 = min

x>>0

(
max
i

(Fx)i
xi

)
(11.87)

e il valore λ0 viene raggiunto soltanto se x è proporzionale a v0.

12Fx = λ̃x non è ammissibile, altrimenti λ0 non sarebbe l’autovalore di Perron.
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Prova Sia x un arbitrario vettore strettamente positivo e sia mini
(Fx)i
xi

= λ̃. Risulta
allora, per i = 1, 2, . . . , n, (Fx)i ≥ λ̃xi, ∀i, e quindi Fx ≥ λ̃x. Di conseguenza

λ̃ ∈ {λ : Fx ≥ λx per qualche x > 0},

e ciò implica, attesa la (11.83), λ̃ ≤ λ0. D’altra parte, scegliendo x = v0 si ha (Fx)i
xi

= λ0

per ogni i. Quindi l’eguaglianza di sinistra in (11.87) è verificata, scegliendo x = v0.
Se un vettore x >> 0 soddisfacesse mini

(Fx)i
xi

= λ0 ma il valore minimo non fosse raggiunto
per tutti i valori dell’indice i, si avrebbe Fx > λ0x, e per il punto (ii) delle proposizione
11.5.7 si otterrebbe l’assurdo λ0 > λ0. Quindi nell’eguaglianza di sinistra di (11.87) il
massimo si raggiunge soltanto in corrispondenza all’autovettore v0.
L’eguaglianza di destra si prova in modo analogo.

• Esempio 11.5.2 [Controllo di potenza in una rete di trasmissione] Si consideri una rete
costituita da n ≥ 2 trasmettitori T1, T2, . . . , Tn con livelli di potenza positivi p1, p2, . . . pn > 0, che
trasmettono a n ricevitori R1, R2, . . . , Rn. Il generico trasmettitore Ti è in comunicazione soltanto
con il ricevitore Ri, ma quest’ultimo riceve segnale (indesiderato!) anche dagli altri trasmettitori.

Per ogni i e j, indichiamo con gij > 0 il
guadagno dal trasmettitore Tj al ricevitore
Ri.
Allora il livello di potenza Si del segna-
le “utile” ricevuto dal ricevitore Ri da
parte del trasmettitore Ti con cui comu-
nica è giipi, mentre il livello di potenza
del segnale di interferenza captato da Ri
e dovuto al trasmettitore Tk, k 6= i è dato
da gikpk.
Complessivamente, il segnale di inter-
ferenza sul ricevitore Ri ha un livello di
potenza Ii =

P
k 6=i gikpk e il rapporto fra

la potenza del segnale utile e quella del se-
gnale di interferenza è dato da
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Figura 11.5.1

Si
Ii

=
giipiP
k 6=i gikpk

(11.88)

Per un’assegnata matrice G = [gij ] dei guadagni, il rapporto Si/Ii dipende dal vettore p =ˆ
p1 p2 . . . pn ]T ma rimane invariato se il vettore viene moltiplicato per una arbitraria costante

positiva. La situazione più critica si verificherà in corrispondenza al ricevitore Ri per il quale risulta

minimo il rapporto Si/Ii. Tale valor minimo, mini
Si
Ii

, viene denotato con l’acronimo SIR13 e il

problema che intendiamo affrontare è quello di determinare il vettore delle potenze p in modo da
rendere SIR il più elevato possibile

max
p>>0

„
min
i

Si
Ii

«
. (11.89)

A tale scopo, introduciamo la matrice positiva irriducibile Ĝ = [ĝij ] = (diagG)−1(G− diagG) con

ĝij =

8<:
gij
gii

se i 6= j

0 se i = j

13Signal to Interference Ratio
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e osserviamo che risolvere in p il problema (11.89) equivale a minimizzare, rispetto a p, il valore

massimo dei rapporti inversi IiSi . Il problema si riduce allora al seguente

min
p>>0

„
max
i

Ii
Si

«
= min

p>>0

 
max
i

(Ĝp)i
pi

!
. (11.90)

Per il corollario 11.5.8, i livelli di potenza ottimali sono quelli proporzionali alle componenti del
vettore di Perron v0 di Ĝ. In corrispondenza a tali livelli, il valore massimo dei rapporti inversi è
minimo e vale λ0, l’autovalore di Perron di Ĝ. Quindi 1/λ0 fornisce il valore massimo del SIR.

• Esercizio 11.5.3* [Derivata di un determinante] Se M(z) = [mij(z)] è una matrice n × n i
cui elementi mij(z) sono funzioni derivabili della variabile reale z, allora

d

dz
detM(z) =

nX
i=1

nX
j=1

[adjM(z)]ij
dmij(z)

dz
=

nX
i=1

detM (i)(z) (11.91)

dove M (i)(z) è la matrice ottenuta da M(z) sostituendo nella riga i-esima gli elementi mij(z) con

le rispettive derivate
dmij(z)

dz
, per j = 1, 2, . . . , n.

] Suggerimento: si applichi la regola di derivazione delle funzioni composte: detM dipende dalle n2

variabili m11,m12, . . . ,mnn, ciascuna delle quali è a sua volta funzione di z.
La dipendenza di detM dalla variabile mij si ricava dalla formula

detM = mi1[adjM ]i1 + . . .+mij [adjM ]ij + . . .+min[adjM ]in,

nella quale [adjM ]i1, . . . [adjM ]in non dipendono da mij e quindi
∂ detM

∂mij
= [adjM ]ij. Da ciò segue

d

dz
detM(z) =

nX
i=1

nX
j=1

∂ detM

∂mij

dmij

dz
=

nX
i=1

nX
j=1

[adjM ]ij
dmij

dz
.

• Esercizio 11.5.4* [Comportamento di ∆F (z) e di adj(zI − F )] Se F > 0 è una matrice
irriducibile con autovalore massimale positivo λ0, allora
(i) sul semiasse reale positivo la funzione polinomiale ∆F (·) : R+ → R : z 7→ ∆F (z) ha derivata
positiva per ogni numero reale z ≥ λ0;
(ii) la matrice adj(zI − F ) è strettamente positiva per ogni numero reale z ≥ λ0.

] Soluzione. (i) Si fattorizzi sul campo reale il polinomio caratteristico di F . Se λ0, λ1, . . . , λr sono
le sue radici reali e µ1, µ̌1, µ2, µ̌2, . . . µs, µ̌s le radici complesse coniugate

∆F (z) = (z − λ0)(z − λ1) . . . (z − λr)
“
z2 − (µ1 + µ̌1)z + µ1µ̌1

”
. . .
“
z2 − (µs + µ̌s)z + µsµ̌s

”
si ha λi < λ0, i = 1, . . . , r, e Reµj < λ0, j = 1, . . . , s. Quindi, per ogni z ≥ λ0, sia i fattori lineari
z − λi i = 1, . . . , r, e le loro derivate (rispetto a z), sia i fattori quadratici z2 − (µj + µ̌j)z + µj µ̌j e
le loro derivate 2z − (µj + µ̌j) sono positivi.

Perciò l’espressione della derivata

d∆F (z)

dz
=

∆F (z)

z − λ0
+

rX
i=1

∆F (z)

z − λi
+

rX
i=1

∆F (z)(2z − µj − µ̌j)
z2 + (µj + µ̌j)z + µj µ̌j

per z > λ0 consta di addendi tutti positivi, mentre per z = λ0 ha positivo il primo addendo e nulli
gli altri. Ne consegue che per z ≥ λ0 la funzione polinomiale ∆F (z) è strettamente crescente.

(ii) Dall’identità (zI−F )adj(zI−F ) = ∆F (z)In si ottiene (λ0I−F )adj(λ0I−F ) = 0, quindi ogni
colonna non nulla di adj(λ0I − F ) è un autovettore di F relativo all’autovalore λ0.
Poiché l’autospazio di λ0 ha dimensione 1, il rango della matrice λ0I − F è n − 1, quindi esiste
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almeno un minore di ordine n − 1 non nullo e la matrice aggiunta ha un elemento diverso da 0.
Allora almeno una colonna coljadj(λ0I − F ) è autovettore di λ0, e pertanto è strettamente positiva
o strettamente negativa. Lo stesso ragionamento vale per la matrice FT , anch’essa irriducibile con
autovalore massimale λ0. Da adj(λ0I − FT ) = adj(λ0I − F )T segue che adj(λ0I − F ) ha una riga,
p.e. la i-esima, strettamente positiva o strettamente negativa. Quindi le colonne di adj(λ0I − F )
sono vettori tutti strettamente positivi o tutti strettamente negativi, proporzionali all’autovettore v0.
Infine, applicando (11.91) a M(z) = zI − F si ha dmij(z)/dz = 1 se i = j e dmij(z)/dz = 0 se
i 6= j, da cui

d

dz
∆F (z) =

nX
i=1

[adj(zI − F )]ii = tr(adj(zI − F )).

Se z = λ0, la derivata di ∆F (z) è positiva, quindi è positiva la traccia di adj(λ0I − F ), quindi
adj(λ0I − F ) è strettamente positiva. Se z > λ0, la matrice (zI − F )−1 è strettamente positiva
(proposizione 11.5.6) e ∆F (z) > ∆F (λ0) = 0 è un numero positivo. Quindi è strettamente positiva
la matrice adj(zI − F ) = (zI − F )−1∆F (z).

11.6 Proprietà spettrali di matrici non negative generiche

Per una arbitraria matrice non negativa, alcune delle conclusioni del teorema di Perron
Frobenius valgono in forma più “debole”.

Proposizione 11.6.1 [Matrici riducibili: teorema di Perron-Frobenius] Se F ∈
Rn×n

+ è una matrice non negativa,

i) [Autovalore massimale non negativo, con autovettore positivo] esistono
un numero reale λ0 ≥ 0 e un vettore v0 > 0 tali che

Fv0 = λ0v0; (11.92)

ii) [Struttura generale dello spettro] per ogni altro autovalore λ ∈ Λ(F ) si ha
|λ| ≤ λ0;

iii) [Spettro periferico] gli autovalori di massimo modulo hanno tutti una fase che
è un multiplo razionale di 2π. Esistono inoltre interi η1, . . . , ηg, g ≤ n, per cui gli
autovalori a modulo λ0 sono tutti e soli i numeri complessi dati da

λ0e
j 2π
ηh
kh , h = 1, 2 . . . , g, kh = 1, 2, . . . , ηh ; (11.93)

iv) [Quando esiste un autovettore strettamente positivo in Uλ0?] l’autospazio
Uλ0 , corrispondente all’autovalore massimale λ0, comprende un autovettore v0 stret-
tamente positivo se e solo se, nella forma normale (11.20), λ0 è autovalore di tutti i
blocchi isolati F̄i,i, i = 1, 2, . . . , h , ma non è autovalore degli altri blocchi diagonali
F̄i,i, i > h;

v) [Monotonicità dell’autovalore massimale] se F̄ è maggiore di F , ovvero F̄ −
F > 0, i corrispondenti autovalori massimali non negativi λ̄0 e λ0 soddisfano la
diseguaglianza λ̄0 ≥ λ0.

Prova (i) e (ii) Se lo spettro di F contiene solo l’autovalore nullo, la matrice F è nilpo-
tente. Scelto un arbitrario vettore x > 0, esiste una potenza minima ν in corrispondenza
alla quale vale F νx = 0. Allora il vettore positivo e non nullo v0 := F ν−1x soddisfa
Fv0 = 0 = 0v0.
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Se F non è nilpotente, denotato con λ0 > 0 il massimo fra gli autovalori di Perron dei
blocchi diagonali irriducibili nella forma normale, lo spettro di F contiene λ0 e soddisfa
la condizione λ0 ≥ |λ|, ∀λ ∈ Λ(F ). Rimane da verificare che a λ0 corrisponde almeno un
autovettore positivo. Se u ∈ Rn è un autovettore corrispondente a λ0, da Fu = λ0u segue

F |u| ≥ λ0|u|. (11.94)

e se (11.94) vale come eguaglianza, abbiamo concluso. Se (11.94) vale come diseguaglianza,
consideriamo il sottoinsieme non vuoto di S definito da D := {x ∈ S : Fx ≥ λ0x}. Esso è
compatto e convesso, e la mappa

φ : D → D : x 7→ Fx∑n
i=1(Fx)i

=
Fx

1TFx
. (11.95)

- è ben definita e continua in D, dato che per ogni x ∈ D il denominatore di (11.95),
1TFx, soddisfa

1TFx ≥ 1Tλ0x = λ0;

- ha immagine effettivamente contenuta in D: da Fx ≥ λ0x segue infatti

Fφ(x) = F
Fx

1TFx
≥ F λ0x

1TFx
= λ0

Fx
1TFx

= λ0φ(x).

Per il teorema di Brouwer-Tychonov φ ammette un punto fisso v0 ∈ D, ovvero[
1TFv0

]
v0 = λ̃0v0 = Fv0, con λ̃0 = 1TFv0.

Da Fv0 ≥ λ0v0 (perché v0 ∈ D) e da Fv0 = λ̃0v0 segue λ̃0 ≥ λ0 e quindi λ̃0 = λ0, dal
momento che λ0 è un autovalore di modulo massimo.

iii) Lo spettro periferico di F è costituito dagli autovalori a modulo λ0. Se λ0 > 0
(altrimenti l’enunciato è banale), è immediato che lo spettro periferico di F è formato
dagli autovalori a modulo massimo dei blocchi diagonali irriducibili a raggio spettrale λ0

nella forma normale (11.20) F̄ di F . Basta allora applicare il teorema di Frobenius-Perron
per le matrici irriducibili (proposizione 11.5.1).

iv) Riferiamoci alla forma normale F̄ . Se l’autovalore non negativo massimale λ0 è nullo, la
matrice F̄ è nilpotente e la condizione v0 >> 0 è incompatibile con la condizione F̄v0 = 0,
a meno che non sia F = 0. Se λ0 > 0, consideriamo l’equazione

F̄v0 =



F̄1,1

0 F̄2,2

0 · · · . . .
0 0 . . . F̄h,h

|
|
|
|

O

−− −− −− −−− | − −− −− −−−
? ? . . . ?
? ? . . . ?
? ? . . . ?

|
|
|

F̄h+1,h+1

?
. . .

? ? F̄k,k





v(1)
0

v(2)
0
...

v(h)
0

−−−
v(h+1)

0
...

v(k)
0


= λ0



v(1)
0

v(2)
0
...

v(h)
0

−−−
v(h+1)

0
...

v(k)
0


(11.96)
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e imponiamo che le componenti v(j)
0 , j = 1, 2, . . . , k, della partizione di v0 siano tutte

strettamente positive. Allora λ0 risulta essere autovalore dei blocchi isolati F̄i,i, i =
1, 2, . . . , h. Verifichiamo che λ0 è maggiore dell’autovalore massimale λ

(h+1)
0 del blocco

F̄h+1,h+1. Utilizziamo la (h+ 1)-esima riga di (11.96):

λ0v
(h+1)
0 =

h∑
j=1

F̄h+1,jv
(j)
0 + F̄h+1,h+1v

(h+1)
0 . (11.97)

Se F̄h+1,h+1 è nulla, si ha λ0 > λ
(h+1)
0 = 0. Se è irriducibile, premoltiplichiamo entrambi

i membri di (11.97) per l’autovettore sinistro (w(h+1)
0 )T >> 0T relativo all’autovalore

λ
(h+1)
0 di F̄h+1,h+1. Poiché F̄h+1,j è positiva per qualche j ≤ h e le componenti v(j)

0 sono
strettamente positive, si ottiene

λ0(w
(h+1)
0 )T v(h+1)

0 = (w(h+1)
0 )T

h∑
j=1

F̄h+1,jv
(j)
0 +λ(h+1)

0 (w(h+1)
0 )T v(h+1)

0 > λ
(h+1)
0 (w(h+1)

0 )T v(h+1)
0 .

Atteso che (w(h+1)
0 )Tv(h+1)

0 è un numero positivo, si conclude che λ0 > λ
(h+1)
0 . Un analogo

ragionamento vale per gli autovalori massimali dei successivi blocchi diagonali non isolati.
Viceversa, nell’ipotesi che λ0 > 0 sia autovalore massimale di tutti i blocchi diagonali
isolati e che gli altri blocchi diagonali abbiano autovalori massimali λ(i)

0 < λ0, proviamo
che l’equazione (11.96) ammette soluzione v0 strettamente positiva. Allo scopo, scegliamo
come componenti v(i)

0 , i ≤ h, gli autovettori strettamente positivi dei blocchi diagonali
isolati forniti dal teorema di Frobenius. L’equazione

(λ0I − F̄h+1,h+1)v(h+1)
0 =

h∑
j=1

F̄h+1,jv
(j)
0

nell’incognita v(h+1)
0 ammette una soluzione strettamente positiva. Infatti, essendo λ(h+1)

0 <
λ0, per la proposizione 11.5.7 (λ0I − F̄h+1,h+1)−1 è una matrice strettamente positiva e

v(h+1)
0 = (λ0I − F̄h+1,h+1)−1

h∑
j=1

F̄h+1,jv
(j)
0 >> 0

fornisce una soluzione strettamente positiva perché il vettore
∑h

j=1 F̄h+1,jv
(j)
0 è positivo.

Induttivamente, possiamo costruire allo stesso modo le componenti v(h+2)
0 , . . . ,v(k)

0 .

v) Per ogni ε > 0 le matrici F̄ε := F̄ + ε11T e Fε := F + ε11T sono strettamente positive
e soddisfano la diseguaglianza F̄ε > Fε. Indicati con λ̄

(ε)
0 e con λ

(ε)
0 i rispettivi autovalori

massimali, dal punto (v) del teorema di Perron abbiamo, per ogni valore positivo di ε,
λ̄

(ε)
0 > λ

(ε)
0 . Passando al limite per ε → 0 e tenuto conto che gli autovalori sono funzione

continua degli elementi delle matrici, otteniamo λ̄0 = limε→0 λ̄
(ε)
0 ≥ limε→0 λ

(ε)
0 = λ0.

• Esercizio 11.6.1 (i) Sia F̄ la matrice positiva in forma normale (11.20), con autovalore positivo
massimo λ0 > 0, e siano F̄i,i e F̄j,j il primo e l’ultimo blocco diagonale (eventualmente coincidenti)
relativi all’autovalore λ0.

(i) Se v0 è un autovettore destro positivo di λ0, i blocchi v
(`)
0 , ` < i sono tutti nulli.

(ii) Se il primo dei blocchi non nulli di v0 è v
(ν)
0 , allora v

(ν)
0 >> 0 è un autovettore destro del blocco
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irriducibile F̄ν,ν , relativo all’autovalore positivo massimo λ0.
(iii) Se t ≤ j e se ṽ0 > 0 è un autovettore della sottomatrice

F̃ =

26664
F̄t,t
F̄t+1,t F̄t+1,t+1

. . .

F̄k,t F̄k,t+1 . . . F̄k,k

37775
relativo all’autovalore λ0, allora il vettore

»
0
ṽ0

–
∈ Rn+ è autovettore di F̄ .

Corollario 11.6.2 [Sottomatrici principali di una matrice non negativa] Se
F ∈ Rn×n

+ e λ0 ≥ 0 è il suo autovalore massimale, ogni sottomatrice F̃ ∈ Rm×m
+ ottenuta

da F cancellando n − m > 0 righe e colonne di egual indice ha autovalore massimale
λ̃0 ≤ λ0. Se F è irriducibile, la diseguaglianza vale in senso stretto: λ̃0 < λ0.

Prova Non è restrittivo ipotizzare che F̃ sia il blocco F11 della matrice F =
[
F11 F12

F21 F22

]
.

Per ogni α ∈ [0, 1], si ha

F =
[
F11 F12

F21 F22

]
≥ Fα :=

[
F11 αF12

αF21 αF22

]
≥ F0 :=

[
F11 0
0 0

]
Se denotiamo con λ

(α)
0 l’autovalore massimale di Fα, si ha λ̃0 = λ

(0)
0 . Scegliamo allora

α ∈ (0, 1). Per il punto (v) delle proposizioni 11.5.1 e 11.6.1 si ha

λ0 = λ
(1)
0 ≥ λ(α)

0 ≥ λ(0)
0 = λ̃0,

e la prima diseguaglianza è stretta, λ(1)
0 > λ

(α)
0 , se F è irriducibile.

• Esercizio 11.6.2 [Proprietà di λI−F ] Se λ0 è l’autovalore non negativo massimo della matrice
non negativa F = [fij ] e se λ > λ0, allora
(i) F/λ è matrice asintoticamente stabile;
(ii) per ogni i risulta fii ≤ λ0;
(iii) gli elementi diagonali di λI − F sono positivi e non positivi gli altri14;
(iv) il vettore v =

ˆ
v1 v2 . . . vn ]T = (λI − F )−11 è un vettore strettamente positivo;

(v) posto D = diag{v1, v2, . . . vn}, la matrice R := (λI −F )D è diagonalmente dominante per righe
(ossia |rii| >

P
j 6=i |rij |).

] Suggerimenti: (ii) dal corollario 11.6.2; (iv) (λI − F )−11 = λ−1
ˆ
In +

P∞
i=1 λ

−iF i
˜
1 ≥ λ−11;

(v) da D1 = (λI − F )−11 segue (λI − F )D1 = 1; quindi le righe di (λI − F )D hanno somma
unitaria e |(λ− fii)vi| = (λ− fii)vi >

P
j 6=i fijvj =

P
j 6=i |fijvj |.

• Esercizio 11.6.3 Se F è una generica matrice positiva di dimensioni n× n
(i) è vero che gli autovalori a modulo massimo hanno fase multipla di 2π

n
? e fase multipla di 2π

n!
?

(ii) se λ0 è il suo raggio spettrale, l’autospazio Uλ0 ha una base di autovettori positivi?
(iii) se la forma normale di F contiene 3 blocchi diagonali irriducibili relativi all’autovalore massimale
λ0, quale fra le seguenti conclusioni possiamo trarre circa la forma di Jordan di F?
- contiene tre miniblocchi relativi all’autovalore λ0?
- contiene un miniblocco di ordine 3 relativo all’autovalore λ0?
- può contenere, a seconda dei casi, da uno a tre miniblocchi relativi all’autovalore λ0?

14una matrice A soddisfacente la condizione aij ≤ 0,∀i 6= j si dice una Z-matrice .
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] Suggerimento. (ii) La matrice nilpotente F =

24 0(n−1)×(n−1) 0

1Tn−1 0

35 ha rango 1. Poiché dim kerF =

dimUλ0 = n− 1, essa ammette altri autovettori, oltre all’autovettore positivo en. Quali?

L’autovalore massimale λ0 di una matrice non negativa può essere stimato, e in taluni casi
determinato con esattezza, a partire dalle somme degli elementi di riga o di colonna.

Proposizione 11.6.3 [Somme di riga o di colonna e autovalore massimale] Se
F = [fij ] ∈ Rn×n

+ è una matrice non negativa e se

cj =
n∑
i=1

fij , j = 1, 2, . . . n e ri =
n∑
j=1

fij , i = 1, 2, . . . n

sono le somme degli elementi che costituiscono rispettivamente la colonna j-esima e la riga
i-esima di F , allora l’autovalore massimale non negativo λ0 soddisfa le diseguaglianze

min
j
cj ≤ λ0 ≤ max

j
cj ; min

i
ri ≤ λ0 ≤ max

i
ri (11.98)

Prova Non è restrittivo supporre che l’autovettore

v0 =


ξ1

ξ2
...
ξn

 > 0

corrispondente all’autovalore λ0 abbia somma delle componenti unitaria. Allora da

f11ξ1 + f12ξ2 + . . .+ f1nξn = λ0ξ1

f21ξ1 + f22ξ2 + . . .+ f2nξn = λ0ξ2

. . . . . . . . .
fn1ξ1 + fn2ξ2 + . . .+ fnnξn = λ0ξn (11.99)

sommando per colonne si ottiene
n∑
i=1

fi1ξ1 +
n∑
i=1

fi2ξ2 + . . .+
n∑
i=1

finξn = c1ξ1 + c2ξ2 + . . .+ cnξn = λ0

n∑
j=1

ξj = λ0 (11.100)

Dalle diseguaglianze

min
j
cj [ξ1 + ξ2 + . . .+ ξn] ≤ c1ξ1 + c2ξ2 + . . .+ cnξn ≤ max

j
cj [ξ1 + ξ2 + . . .+ ξn]

tenendo conto di (11.100) e del fatto che le componenti di v0 hanno somma unitaria, segue

min
j
cj ≤ λ0 ≤ max

j
cj . (11.101)

Analogamente, ragionando sull’autovettore sinistro (o considerando la matrice F T ), si
perviene a

min
i
ri ≤ λ0 ≤ max

i
ri . (11.102)
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• Esercizio 11.6.4 (i) La stima (11.98) dell’autovalore massimale può essere raffinata:

max{min
j
cj ,min

i
ri} ≤ λ0 ≤ min{max

j
cj ,max

i
ri}

(ii) In una matrice non negativa risulta maxi ri ≥ minj cj .
] Suggerimento: si noti che (r1 + r2 + . . .+ rn) ≤ nmaxi ri e che nminj cj ≤ (c1 + c2 + . . .+ cn).

(iii) La diseguaglianza in (ii) vale per anche per matrici cui elementi hanno segno arbitrario?

• Esercizio 11.6.5 Se A ∈ Rp×n+ , sia ri(A), i = 1, . . . , p la somma degli elementi della riga i-esima di
A e si ponga α = maxi ri(A). Analogamente, se B ∈ Rn×m+ , sia rj(B), j = 1, . . . ,m la somma degli
elementi della riga j-esima di B e si ponga β = maxj rj(B). Allora
(i) ogni riga del prodotto AB ha somma degli elementi non superiore a αβ.
] Suggerimento: r`(AB) =

P
j,k a`jbjk =

P
j a`j

P
k bjk =

P
j a`jrj(B) ≤

P
j a`jβ ≤ αβ.

Se A e B sono quadrate, i.e. p = n = m, allora
(ii) se αβ < 1 allora AB e BA sono asintoticamente stabili;
(iii) se β ≤ 1 e α < 1, ogni matrice M che sia prodotto di νA fattori eguali ad A e νB fattori eguali
a B ha somme di riga non superiori a ανA . Al divergere del numero dei fattori A la matrice M è
infinitesima.

11.7 M-matrici e matrici di Hurwitz-Metzler

Nella discussione sulla struttura dei sistemi positivi (discreti e continui) torna utile in-
trodurre e studiare alcune classi di matrici strettamente connesse alle non negative: le
Z-matrici, le M-matrici e le loro opposte (le matrici di Metzler e di Hurwitz-Metzler).

Definizione 11.7.1 [Z-matrici, matrici di Metzler, M-matrici ] Una matrice A ∈
Rn×n si dice

i) una Z-matrice se gli elementi non diagonali sono non positivi, ovvero aij ≤ 0, ∀i 6= j;

ii) una matrice di Metzler se i suoi elementi non diagonali sono non negativi (ossia se
A è l’opposta di una Z-matrice);

iii) una M-matrice se è una Z-matrice ed è positiva15 la parte reale di tutti i suoi auto-
valori;

iv) una matrice di Hurwitz-Metzler se è una matrice di Metzler ed è negativa la parte
reale di tutti i suoi autovalori (ossia se A è l’opposta di una M-matrice)

Evidentemente, le Z-matrici di ordine n sono tutte e sole le matrici del tipo

A = λIn − F, F ∈ Rn×n
+ , λ ∈ R. (11.103)

Poiché lo spettro di F comprende un autovalore reale non negativo massimale λ0 ed è
contenuto nel cerchio dal piano complesso avente centro l’origine e raggio λ0, lo spettro
della Z-matrice A, che è legato a quello di F dalla relazione Λ(A) = λ−Λ(F ), consta di un

15la definizione di M-matrice adottata qui è più restrittiva di quella di Berman-Plemmons “Non negative
matrices in the mathematical sciences” (Academic Press, 1979). Nella definizione di B.P. la parte reale
degli autovalori di una M-matrice A deve essere non negativa e quindi si ammette che una M-matrice possa
essere singolare. La definizione 11.7.1 (iii) coincide con quella di K-matrice (o di M-matrice) introdotta in
Fiedler-Ptack “On matrices with non-positive off-diagonal elements and positive principal minors” (Czech
Math.J., vol 12 (1962), 382-400); se si adotta invece la definizione di B.P., le matrici qui considerate sono
le M-matrici non singolari.
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autovalore reale µ0 = λ−λ0 a parte reale minima, e ogni altro autovalore di A appartiene
al cerchio con centro in λ e raggio λ0. Si noti che la matrice risolvente (λIn−F )−1 di una
matrice non negativa F è l’inversa di una Z-matrice (quando λ è reale).

Analogamente, le matrici di Metzler sono quelle che possono essere scritte nella forma
A = F − λIn, con F ∈ Rn×n

+ , λ ∈ R. Lo spettro Λ(A) = Λ(F ) − λ consta allora di un
autovalore reale µ0 = λ0−λ a parte reale massima, e ogni altro autovalore di A appartiene
al cerchio con centro in −λ e raggio λ0.

-

6

&%
'$srr λ0

Λ(F )
F > 0

-

6

&%
'$
×s rrλλ− λ0

Λ(λIn − F )
Z-matrice

-

6

&%
'$
× srr−λ λ0 − λ

Λ(F − λIn)
Metzler

Figura 11.7.1

Le M-matrici (e le matrici di Hurwitz-Metzler, loro opposte) sono state e sono tuttora
oggetto di un’intensa attività di studio: esse costituiscono, direttamente o tramite altre
classi di matrici ad esse collegate, un fondamentale strumento per l’analisi di ampie classi
di sistemi in Economia, in Biologia, in Ecologia, etc. La proposizione 11.7.2 riunisce alcuni
importanti risultati sulle M-matrici, che saranno utilizzati nel seguito di questi Appunti. A
completamento, la proposizione successiva riporta ulteriori caratterizzazioni, ma è lontana
dal fornire un quadro completo dei numerosi risultati reperibili in letteratura.

Proposizione 11.7.2 [Caratterizzazioni delle M-matrici] Sia A una Z-matrice di
ordine n. Si equivalgono i seguenti fatti:

0) A è una M-matrice, ovvero Re(Λ(A)) > 0;

i) [Connessione con le matrici positive] A è esprimibile nella forma λIn−F , con
F ∈ Rn×n

+ e con λ > λ0, dove λ0 denota l’autovalore massimale non negativo di F ;

ii) [Coefficienti del polinomio caratteristico] i coefficienti del polinomio carat-
teristico di −A sono tutti positivi16, ovvero ∆−A(z) = zn +αn−1z

n−1 +αn−2z
n−2 +

. . .+ α0, αi > 0, ∀i;

iii) [Positività dell’inversa] A è non singolare e la sua inversa A−1 è una matrice
positiva;

iv) [A può mappare in Rn
+ soltanto vettori non negativi] per ogni vettore

x ∈ Rn, la condizione Ax ≥ 0 implica x ≥ 0;

v) [A mappa internamente a Rn
+ qualche punto interno di Rn

+] esiste un
vettore p� 0 per cui risulta Ap� 0.

16quindi i coefficienti del polinomio caratteristico per una matrice di Metzler-Hurwitz sono tutti positivi
e per una M-matrice sono di segno alterno.
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Prova Dimostreremo le implicazioni secondo lo schema seguente:

0) ⇔ i);
0) ⇔ ii);
i) ⇒ iii) ⇒ iv) ⇒ i);
iii) ⇒ v)

0)⇔ i) Poiché A è una Z-matrice, è esprimibile nella forma A = λI−F con F := λIn−A
matrice non negativa. Se λ0, λ1, . . . , λn−1 sono gli autovalori di F e λ0 ≥ 0 ne è l’autovalore
di Perron, gli autovalori di A sono

λ− λ0, λ− λ1, . . . , λ− λn−1 (11.104)

e quello con parte reale minima è λ − λ0. La condizione che abbiano tutti parte reale
positiva equivale allora a

λ > λ0. (11.105)

0) ⇔ ii) Se gli autovalori di λI − F hanno parte reale positiva, quelli di −A = F −
λIn hanno parte reale negativa e pertanto il polinomio caratteristico di −A, ha positivi
tutti i coefficienti17 perché prodotto di fattori polinomiali di primo e secondo grado con
coefficienti positivi.
Viceversa, denotiamo con µ > 0 una costante non negativa per cui F := −A + µI sia
matrice positiva, con autovalore di Perron λ0 ≥ 0. Poiché i coefficienti del polinomio
caratteristico ∆−A(z) = zn+αn−1z

n−1 + . . .+α1z+α0 sono tutti positivi, non può essere
µ ≤ λ0. Altrimenti la matrice −A = F −µI avrebbe qualche autovalore ξ0 positivo o nullo
che, risultando zero del polinomio caratteristico, soddisfa

∆−A(ξ0) = ξn0 + αn−1ξ
n−1
0 + . . .+ α1ξ0 + α0 = 0,

in contraddizione con la positività di tutti i coefficienti αi. Allora deve essere µ > λ0, la
matrice −A = F − µI ha soltanto autovalori a parte reale negativa e A è una M-matrice.

i) ⇒ iii) Poiché in A = λI − F tutti gli autovalori hanno parte reale positiva, A è non
singolare e, per il lemma 11.5.6, da (11.105) consegue la sviluppabilità di (λI − F )−1 in
serie di Neumann

A−1 = (λIn − F )−1 =
∞∑
i=0

F i

λi+1
,

nella quale tutti gli addendi sono non negativi. Pertanto la matrice A−1 è positiva.
iii) ⇒ iv) Da Ax ≥ 0, essendo positiva la matrice A−1 risulta anche A−1(Ax) ≥ 0 e
quindi x ≥ 0.
iv)⇒ i) Rappresentiamo la Z-matrice A nella forma A = λI−F , con F ≥ 0, e sia v0 > 0
l’autovettore di Perron di F . Risulta allora

A(−v0) = (λI − F )(−v0) = (λ− λ0)(v0),

incompatibile con la (iv) se λ ≤ λ0

17e la matrice opposta, A, ha un polinomio caratteristico con coefficienti di segno alterno
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iii) ⇒ v) Sia x >> 0 un arbitrario vettore strettamente positivo. Allora p := A−1x
è strettamente positivo, perché A−1 è positiva in ogni sua riga, e soddisfa ovviamente
Ap >> 0.

v) ⇒ i) Dalla condizione Ap = (λI − F )p := x >> 0 segue, premoltiplicando per un
autovettore sinistro wT

0 > 0T corrispondente all’autovalore di Perron λ0 della matrice F ,

wT
0 (λI − F )p = wT

0 x = (λ− λ0)wT
0 p.

L’ultima uguaglianza implica λ > λ0 e pertanto la (i).

Proposizione 11.7.3 * [Ulteriori caratterizzazioni delle M-matrici] Sia A una
Z-matrice di ordine n. Si equivalgono i seguenti fatti:

0) A è una M-matrice, ovvero Re(Λ(A)) > 0;

vi) [Prodotto per matrici diagonali e dominanza] esiste una matrice diagonale
D = diag{d1, d2, . . . , dn} con di > 0, i = 1, 2, . . . , n, tale che la matrice Ā := AD
ha diagonale principale positiva e strettamente dominante per righe, ovvero āii >∑

j 6=i |āij |;

vii) [Dominanza e similarità con matrici diagonali] esiste una matrice diagonale
D = diag{d1, d2, . . . , dn} con di > 0, i = 1, 2, . . . , n, tale che la matrice A(S) :=
D−1AD ha diagonale principale positiva ed è strettamente dominante per righe;

viii) [A è una P-matrice18] sono positivi i minori principali “annidati” di A, ovvero

a11 > 0, det
[
a11 a12

a21 a22

]
> 0, det

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 > 0, . . . ,detA > 0 (11.106)

e quindi tutti i minori principali di A;

ix) [Fattorizzazione LU] A fattorizza nel prodotto di due Z-matrici triangolari

A = LU,

dove L è triangolare inferiore con diagonale positiva e U è triangolare superiore con
diagonale positiva;

x) [Equazione di Lyapunov (tempo continuo)] esiste una matrice diagonale

D̃ = diag{d̃1, d̃2, . . . , d̃n} , d̃1, d̃2, . . . , d̃n > 0 ,

tale che D̃A+AT D̃ è definita positiva.

18Una matrice quadrata è una P-matrice se sono positivi tutti i suoi minori principali annidati, è una
matrice definita positiva se è una P-matrice simmetrica.
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Prova Tenuto conto della proposizione precedente, dimostreremo le implicazioni secondo
lo schema:

iv) ⇒ vi) ⇒ vii) ⇒ 0)
0) ⇒ x) ⇒ 0)
i) ⇒ viii) ⇒ ix) ⇒ iii).

v)⇒ vi) Se d = [ d1 d2 . . . dn ]T � 0 verifica la condizione Ad� 0 , sia D la matrice
diagonale con elementi diagonali di e sia Ā = AD. Abbiamo allora

0� Ad = AD1 = Ā1 (11.107)

e poiché gli elementi fuori diagonale āij = aijdj di Ā sono non positivi, come quelli della
Z-matrice A, da (11.107) segue

āii > −
∑
j 6=i

āij =
∑
j 6=i
|āij | ≥ 0, i = 1, 2, . . . , n. (11.108)

Rimane cos̀ı provata la stretta positività degli elementi diagonali di Ā (e di A) e la domi-
nanza diagonale per righe della matrice AD.
vi)⇒ vii) Se gli elementi diagonali di Ā := AD sono strettamente positivi e soddisfano le
condizioni di dominanza per righe (11.108), lo stesso può dirsi degli elementi della matrice

A(S) := D−1AD = D−1Ā.

Infatti la riga i-esima di A(S) si ottiene moltiplicando la riga i-esima di Ā per la costante
positiva d−1

i e quindi

a
(S)
ii = d−1

i āii > −
∑
j 6=i

d−1
i āij =

∑
j 6=i
|d−1
i āij | =

∑
j 6=i
|a(S)
ij |, i = 1, 2, . . . , n. (11.109)

vii)⇒ 0) Attesa la (11.109), per ogni indice i fra 1 ed n il cerchio γi con centro nel punto
reale a(S)

ii = aii > 0 e raggio ri =
∑

j 6=i |a
(S)
ij | è contenuto nel semipiano destro aperto

Re(z) > 0 del piano complesso. Per il teorema di Gershgorin (proposizione 2.11.2), gli
autovalori di A(S) sono contenuti nella regione ∪ni=1γi, quindi nel semipiano destro aperto
di C, e lo stesso può dirsi degli autovalori di A, che è matrice simile ad A(S).
0) ⇒ x) Supponiamo che A sia una M-matrice. Per quanto abbiamo dimostrato finora,
vii), 0), vi) sono proprietà equivalenti, quindi esiste una matrice diagonale D con diago-
nale positiva, tale per cui D−1AD ha diagonale positiva ed è dominante per righe. Inoltre
sono M-matrici AT e DATD−1, in quanto Z-matrici aventi il medesimo spettro di A.
D’altra parte, DATD−1, trasposta di D−1AD, ha pure essa diagonale positiva ed è stret-
tamente dominante per colonne. Per la proprietà vi), applicata alla M-matrice DATD−1,
esiste una matrice diagonale V , con diagonale positiva, tale per cui

(DATD−1)V = (DATD−1) diag{v1, v2, . . . , vn} (11.110)

ha diagonale positiva, è strettamente dominante per righe, ma lo è anche per colonne.
Infatti la i-esima colonna di (DATD−1)V è la i-esima colonna di (DATD−1) moltiplicata
per il numero positivo vi. Allora la matrice simmetrica

DATD−1V + V D−1AD (11.111)
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ha diagonale positiva ed è strettamente dominante (per righe e per colonne), quindi per
il teorema di Gershgorin i suoi autovalori hanno parte reale positiva e (11.111) è definita
positiva. Ma allora è definita positiva la matrice

D−1[DATD−1V + V D−1AD]D−1 = AT [D−1V D−1] + [D−1V D−1]A = AT D̃ + D̃A
(11.112)

in cui D̃ = D−1V D−1 è matrice diagonale con elementi diagonali positivi.
x) ⇒ 0) Poiché (−AT )D̃ + D̃(−A) è definita negativa e D̃ è definita positiva, possiamo
concludere, applicando la teoria dell’equazione di Lyapunov, che gli autovalori di −A
hanno parte reale negativa. Quindi A è una Z-matrice i cui autovalori hanno parte reale
positiva, ovvero è una M-matrice.

i)⇒ viii) Sia A = λI − F con λ > λ0 = ρ(F ).
Da det(A) = det(λIn − F ) = ∆F (z)|z=λ, tenuto conto che la funzione polinomiale ∆F :
R→ R : z 7→ ∆F (z) tende a +∞ quando z 7→ +∞ e non ha zeri19 sul semiasse (λ0,+∞),
nel punto λ > λ0 essa assume valore positivo, ovvero è positivo det(A) > 0, il minore di
ordine n della matrice A.
Per ogni altro minore di ordine m < n di A, si consideri la matrice

B = λIn − Φ = λIn −
[
F11 0
0 diag{fm+1,m+1, . . . , fnn}

]
. (11.113)

dove F11 è la sottomatrice di F formata dalle prime m righe e dalle prime m colonne.
L’elemento in posizione (i, j) di Φ coincide con quello nella medesima posizione di F se
i, j ≤ m oppure se i = j, mentre è nullo negli altri casi. Quindi
- la matrice Φ è non negativa,
- il suo raggio spettrale non eccede λ0 (autovalore dominante di F ), risultando Φ ≤ F ,
- gli elementi diagonali di Φ sono più piccoli di λ (cfr. Esercizio 11.6.2).
Poiché B è una Z-matrice che soddisfa la proprietà ii), per il ragionamento appena svolto
si ha det(B) > 0 e da

det(B) = det(λIm − F11)(λ− fm+1,m+1) · · · (λ− fnn) > 0

segue

det(λIm − F11) = det


a11 a12 . . . a1m

a21 a22 . . . a2m

. . . . . .
am1 am2 . . . amm

 > 0. (11.114)

Quindi sono positivi tutti i minori principali “annidati”.
Si noti infine che per ogni matrice di permutazione Π anche ΠTAΠ = λI − ΠTFΠ è
una Z-matrice soddisfacente la (i) e che ogni minore principale di A è minore principale
“annidato” (e quindi positivo) di ΠTAΠ, per un’opportuna scelta di Π.
viii) ⇒ ix) Osserviamo in via preliminare che una Z-matrice triangolare T (inferiore o
superiore) con diagonale positiva è una M-matrice e che per l’equivalenza i)⇔ ii)⇔ iii)
essa è sempre dotata di inversa positiva (rispettivamente triangolare inferiore o superiore).

19λ0 è l’autovalore dominante della matrice non negativa F
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Procediamo ora per induzione sulla dimensione n delle matrici.
Nel caso n = 1 l’implicazione (viii)⇒ (ix) è banalmente vera.
Assumiamo perciò che essa valga per tutte le Z-matrici di ordine n−1 che sono P-matrici,
e proviamo che, se An è una Z-matrice di ordine n e tutti i suoi minori principali annidati
sono positivi, allora essa fattorizza nel prodotto LnUn di Z-matrici triangolari, dove Ln e
Un sono rispettivamente triangolare inferiore e triangolare superiore con diagonale positiva.
Partizionando a blocchi An, abbiamo

An =
[
An−1 −b
−cT ann

]
(11.115)

in cui An−1 è una Z-matrice di ordine n − 1, mentre b e c sono vettori aventi tutte le
componenti non negative. Risultando positivi i minori principali annidati di An e quindi
di An−1, per l’ipotesi induttiva vale la fattorizzazione An−1 = Ln−1Un−1, con Ln−1 e Un−1

Z-matrici, triangolare inferiore la prima e triangolare superiore la seconda, entrambe con
diagonale positiva.
Dalla relazione

det(An)/ det(An−1) = det(ann − cTA−1
n−1b) > 0 (11.116)

segue che le matrici triangolari

Ln =

 Ln−1 0

−cTU−1
n−1 1

 , Un =

Un−1 −L−1
n−1b

0 ann − cTA−1
n−1b

 , (11.117)

hanno positive le diagonali principali e soddisfano la condizione An = LnUn. Poichè Ln−1

e Un−1 sono dotate di inversa positiva per l’osservazione preliminare, attesi i segni degli
elementi di b e c possiamo concludere che sia Ln che Un sono Z-matrici.
ix)⇒ iii) L ed U sono Z-matrici triangolari con diagonale positiva, quindi sono M-matrici,
dotate ciascuna di un’inversa positiva. Allora

A−1 = (LU)−1 = U−1L−1

implica (l’esistenza) e la positività di A−1.

• Esercizio 11.7.1 Si consideri la Z-matrice

L =

26664
`11 0 . . . 0
−`21 `22 . . . 0

. . .

−`n1 −`n2 . . . `nn

37775 =

26664
`11 0 . . . 0
0 `22 . . . 0

. . .

0 0 . . . `nn

37775+

26664
0 0 . . . 0
−`21 0 . . . 0

. . .

−`n1 −`n2 . . . 0

37775
= diag{`11, `22, . . . , `nn} − P

con `ii > 0, i = 1, . . . , n e P ≥ 0. Posto P̃ = diag{`−1
11 , `

−1
22 , . . . , `

−1
nn}P , si verifichi che

L−1 = [In + P̃ + . . .+ P̃n−1]diag{`−1
11 , `

−1
22 , . . . , `

−1
nn}

• Esercizio 11.7.2 [Ulteriori caratterizzazioni delle M-matrici] Per una Z-matrice A si
equivalgono i seguenti fatti

0) A è una M-matrice;



496 CAPITOLO 11. SISTEMI DISCRETI POSITIVI

v bis) esiste un vettore riga wT � 0 per cui risulta wTA� 0T ;

xi) [D-stabilità di −A] la matrice AD ha autovalori a parte reale positiva per ogni matrice
diagonale D avente positivi tutti gli elementi diagonali (ovvero −AD ha autovalori a parte
reale negativa per ogni D, proprietà che va sotto il nome di “D-stabilità” della matrice −A)

xii) ogni sottomatrice principale di A ha spettro contenuto nel semipiano Re(s) > 0 (e quindi è
una M-matrice)

] Suggerimento: 0)⇒ xi) Per ogni D diagonale a diagonale positiva AD è una Z-matrice. Essendo
invertibile con inversa positiva la matrice A (Proposizione 11.7.2.iii), anche (AD)−1 = D−1A−1

esiste ed è positiva. Quindi AD è una M-matrice. Per xii) si ricorra al punto viii) della proposizione
11.7.2.

• Esercizio 11.7.3 [M-matrici simmetriche] Una Z-matrice simmetrica A è una M-matrice se e
solo se A = UTU , dove U è una Z-matrice triangolare superiore con diagonale positiva.

] Suggerimento. Si proceda per induzione su n come al punto (ix) della proposizione 11.7.2, ponendo

An =

»
An−1 −b
−bT ann

–
, An−1 = UTn−1U, Un =

24Un−1 −(UTn−1)−1b

0
q
ann − bTA−1

n−1b

35
• Esercizio 11.7.4 [Ancora sulla caratterizzazione delle M-matrici] Una Z-matrice A di

dimensione n× n è una M-matrice se e solo se

xiii) per ogni vettore d� 0, l’equazione Ax = d ammette una soluzione x� 0;

xiv) l’equazione Ax = 1n ammette una soluzione x� 0.

] Suggerimento (xiii) Se A è una M-matrice, per il punto (iii) della proposizione 11.7.2 esiste A−1

ed è positiva. Quindi l’equazione è risolta dal vettore strettamente positivo A−1d. Viceversa, se
per ogni d � 0 esiste una soluzione x � 0, lo spazio immagine di A è Rn, quindi A è non
singolare. Se la sua inversa contenesse un elemento [A−1]ij < 0, al vettore strettamente positivo
d = ε1n + ej , ε > 0, corrisponderebbe la soluzione x = A−1ε1n +A−1ej che per ε sufficientemente
piccolo ha la componente i-esima negativa.
(xiv) consegue direttamente da (v) della proposizione 11.7.2 e dal punto (xiii) di questo esercizio.

Il seguente corollario riporta alcune proprietà delle M-matrici, che conseguono dalle carat-
terizzazioni riportate nella proposizione 11.7.2 :

Corollario 11.7.4 [Spettro delle M-matrici] Se A è una M-matrice,

a) l’autovalore µ0(A) di A a parte reale minima è un numero reale positivo;

b) se B è una Z-matrice e B ≥ A, allora anche B è una M-matrice e il suo autovalore
a parte reale minima µ0(B) soddisfa la diseguaglianza µ0(B) ≥ µ0(A);

c) µ0 ≤ aii, i = 1, 2, . . . , n.

Prova a) Ovvia conseguenza della definizione di M-matrice.
b) Poiché B è una Z-matrice, per λ > 0 e sufficientemente grande λIn −B è una matrice
positiva e si ha

V := λIn −A ≥ λIn −B := U ≥ 0. (11.118)

Se λ(V )
0 ≥ 0 è l’autovalore massimale di V , deve essere λ > λ

(V )
0 per il punto (i) della

proposizione 11.7.2, e converge la serie di C.Neumann

A−1 = (λIn − V )−1 =
∞∑
i=0

V i

λi+1
.
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Dalla diseguaglianza (11.118) si ha allora la convergenza di

∞∑
i=0

U i

λi+1
= (λIn − U)−1 = B−1 (11.119)

da cui segue che esiste ed è positiva B−1. Per il punto (iii) della proposizione 11.7.2, B è
una M-matrice.
Per provare che l’autovalore reale minimale µ0(B) non può essere inferiore a µ0(A), con-
sideriamo un arbitrario numero reale r soddisfacente r < µ0(A).
Da Re Λ(A− rIn) > 0 segue che A− rIn è una M-matrice. Poiché B− rIn è, come B, una
Z-matrice, e B − rIn ≥ A− rIn, per quanto abbiamo appena dimostrato anche B − rIn è
una M-matrice, ovvero

0 < Re Λ(B − rIn) = Re Λ(B))− r, (11.120)

da cui segueRe Λ(B)) > r. Attesa l’arbitrarietà di r < µ0(A), si conclude cheRe Λ(B)) ≥
µ0(A) e quindi µ0(B) ≥ µ0(A).

c) Si definisca B = diag{a11, a22, . . . , ann}. Chiaramente B è una Z-matrice che soddisfa
B ≥ A, quindi per il punto b) è una M-matrice, e vale la

min
i=1,2,...,n

aii = µ0(B) ≥ µ0(A). (11.121)

• Esercizio 11.7.5 [M-matrici del secondo ordine] Affinché una Z-matrice

A =

»
a11 a12

a21 a22

–
, a12 ≤ 0, a21 ≤ 0

sia una M-matrice è necessario e sufficiente che sia soddisfatta una delle seguenti condizioni (fra
loro equivalenti)

i) a11 > 0 e a11a22 > a12a21;

ii) det(A) > 0 e tr(A) > 0;

iii) in ∆A(s) = s2 + α1s+ α0 si ha α1 < 0 e α0 > 0.

11.8 Riferimenti bibliografici

La letteratura sulle matrici non negative è molto ricca. La monografia

(1) M. Minc “Nonnegative matrices” Wiley, 1988

è di lettura piuttosto gradevole. Contiene numerosi argomenti che non sono stati neppure
accennati in questi Appunti (matrici doppiamente stocastiche, problemi inversi relativi agli
autovalori, congettura di van der Waerden, etc.), mentre per altri presenta una trattazione
assai più completa.

(2) R.B.Bapat, T.E.Raghavan “Nonnegative matrices and applications” volume 64 della
“Encyclopedia of Mathematics and its Applications”, Cambridge Univ. Press, 1997
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evidenzia i forti legami della teoria delle matrici non negative con la teoria dei giochi, la
combinatoria, le programmazione matematica, l’economia e la statistica.
La monografia

(3) A.Berman, R.J.Plemmons “Nonnegative matrices in the mathematical sciences”,
Academic Press, 1979

è stata aggiornata nel 1993 e copre uno spettro di argomenti molto vasto, che comprende
anche le catene di Markov, le M-matrici, la teoria della positività inversa, etc. È di lettura
alquanto impegnativa.
Per un’introduzione alla teoria dei grafi e alle proprietà combinatorie delle matrici non
negative, il libro di H.Minc può essere utilmente integrato da

(4) R.A.Brualdi, H.J.Ryser “Combinatorial matrix theory” volume 39 della “Encyclope-
dia of Mathematics and its Applications”, Cambridge Univ. Press, 1991

Per il teorema di Coxson-Larson si rinvia all’articolo originale

(5) P.G.Coxson, L.Larson, H.Schneider “Monomial patterns in the sequence Akb”, Linear
Algebra and its Appl., vol.96, pp.89-101, 1987.

e per le M-matrici, oltre alla monografia di Berman Plemmons, molto illuminante è
l’articolo (citato nella nota 15 del capitolo)

(6) Fiedler-Ptack On matrices with non-positive off-diagonal elements and positive prin-
cipal minors, Czech Math.J., vol 12, pp. 382-400, 1962.

Per una prima introduzione ai sistemi dinamici lineari positivi si veda il sesto capitolo
della più volte citata monografia

(7) D.G.Luenberger “Introduction to dynamic systems, Wiley, 1979

mentre una trattazione più approfondita, con numerosi esempi di carattere applicativo, è
offerta da

(8) L.Farina, S.Rinaldi “Positive linear systems: theory and applications” Wiley, 2000.

La bibliografia sui sistemi positivi sarà integrata alla fine del capitolo 12 .


