Capitolo 11

RAPPRESENTAZIONE DEI
SISTEMI DISCRETI POSITIVI

Chiamiamo “positivi” i sistemi dinamici nei quali tutte le variabili di stato, cosi come
quelle di ingresso e di uscita, se presenti, possono assumere soltanto valori non negativi.
Situazioni nelle quali le grandezze in gioco hanno significato esclusivamente quando ad
esse si attribuiscano valori non negativi sono piuttosto frequenti, in ambito tecnologico
(pressione, concentrazione, massa,...), biologico (numero di animali o di specie in un
particolare ambiente, frequenza di ricombinazione,. .. ), demografico (numero di individui
in una classe di eta, densita di una popolazione in una data regione, ...), economico
(livello delle merci in un magazzino, quantitad di beni prodotti, ...), etc. Il vincolo che
in un sistema positivo tutte le grandezze in gioco siano non negative e che la legge di
aggiornamento debba conservare tale proprieta si traduce, come € naturale aspettarsi, in
condizioni piuttosto stringenti sulla natura delle equazioni di stato.

In questo capitolo ci soffermeremo soprattutto sui sistemi lineari discreti in evoluzione
libera. I caratteri peculiari di cui sono dotate le matrici quadrate non negative impiegate
per rappresentarne la dinamica consentono di trarre interessanti conclusioni sull’evoluzione
di stato e, nel capitolo 13, di affrontare lo studio delle catene di Markov, che dei sistemi
positivi costituiscono un esempio paradigmatico.

Premettiamo subito che una parte considerevole dell’analisi del comportamento in evolu-
zione libera si puo condurre sul “grafo di influenza” o, equivalentemente, sulla immagine
booleana del sistema, ricorrendo ad argomenti di natura combinatoria che prescindono
dagli specifici valori degli elementi nelle matrici e nei vettori e tengono conto soltanto
dal fatto che tali valori siano o non siano diversi da zero. Questa peculiarita vale non
solo per la dinamica libera dello stato, ma anche per le proprieta di raggiungibilita e di
osservabilita, che costituiranno ’argomento del capitolo 12.

11.1 Rappresentazione dei sistemi lineari discreti positivi

Se consideriamo le equazioni di un sistema lineare discreto

x(t+1) = Fx(t)+ Gu(t)
y(t) = Hx(t)+ Du(t) (11.1)
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ed imponiamo che, per ogni ingresso u(0) e per ogni stato iniziale x(0) a componenti non
negative, I'uscita y(0) e lo stato x(1) abbiano tutte componenti non negative, ¢ immediato
verificare che le matrici F, G, H e D non possono avere alcun elemento negativo.
Infatti, scegliendo u(0) = 0 ed x(0) = e; (’i-esimo vettore della base canonica), lo stato
x(1) e I'uscita y(0) sono costituiti dalla i-esima colonna di F' e dalla i-esima colonna di H,
che pertanto non possono contenere elementi negativi. Scegliendo u(0) = e; ed x(0) = 0,
lo stato x(1) e l'uscita y(0) sono costituiti dalla i-esima colonna di G e dalla i-esima
colonna di D, che a loro volta non possono contenere nessun elemento negativo.
Viceversa, € ovvio che se F,G, H, D hanno tutti gli elementi non negativi, il sistema
(11.1) avra stati e uscite non negativi per ogni ¢t > 0, quando x(0) sia non negativo e per
ogni t > 0 siano non negativi i vettori di ingresso u(t).

11.1.1 Definizioni e notazioni per le matrici non negative

Nel seguito ricorreremo ad una nomenclatura apposita per le matrici e, in particolare, per
i vettori i cui elementi siano non negativi. Se M = [m;;] € RE*™, porremo

e M > 0 se m;; > 0 per ogni 4, j: in questo caso diremo! che la matrice & “stretta-
mente positiva’”;

e M > 0 se m;; > 0 per ogni 4,7 e almeno un elemento della matrice ¢ positivo: in
questo caso la matrice M ¢ “strettamente non negativa” (o “positiva”);

e M > 0 se m;; > 0 per ogni ¢, j, senza escludere il caso che possa aversi M = 0: la
matrice M ¢ in questo caso “non negativa”.

Se M ed N sono matrici (in particolare vettori) di eguali dimensioni, porremo M >>
N, oppure M > N, oppure M > N, a seconda che M — N sia strettamente positiva,
strettamente non negativa o non negativa.

Fra i vettori di R" & strettamente positivo il vettore 17 :=[1 1 ... 1], mentre sono
strettamente non negativi i vettori e; della base canonica. Chiameremo vettori monomi i
multipli positivi dei vettori della base canonica, ovvero i vettori ae;, a >0, i =1,2,...,n.
Se si intende specificare qual ¢ la componente non nulla, ae; sara detto -monomio.

Alcune proprieta dei sistemi positivi dipendono soltanto dal fatto che gli elementi presenti
nelle varie posizioni delle matrici siano o non siano diversi da zero, e non dai particolari
valori assunti dagli elementi positivi. Lo studio di tali proprieta puo essere affrontato
rappresentando vettori e matrici sull’algebra di Boole a due elementi, oppure associando
al sistemi particolari grafi di influenza.

11.1.2 Rappresentazioni booleane e grafi di influenza

Un’algebra di Boole B ¢ un insieme comprendente due elementi particolari 0 e 1 e sul
quale sono definite

'Nomenclatura e simbologia non sono uniformi in letteratura: talvolta matrici e vettori “strettamente
positivi” sono classificati invece come “positivi” e la notazione “>>" di questi Appunti & sostituita da “>".
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e due operazioni binarie, di somma e prodotto?, entrambe commutative e associative,
per le quali valgono, per ogni a, b, c € B, le proprieta di assorbimento

a+(a-b)=a, a-(a+bd)=a (11.2)

e le proprieta distributive (della somma rispetto al prodotto e del prodotto rispetto
alla somma)

a-(b+c)=(a-b)+(a-c), a+((b-¢)=(a+b) (a+c) (11.3)

e un’ operazione unaria di negazione (o complementazione), che indicheremo barrando
I’elemento su cui opera e che soddisfa, per ogni a € B, le condizioni

a+a=1, a-a=0 (11.4)

Gli esempi di algebra di Boole che rivestono interesse per questo capitolo sono:

Esempio 11.1.1 [ALGEBRA A DUE ELEMENTI B3] Sull’insieme {0, 1} si definiscono le operazioni
- di addizione: 0+0=0; 1+0=0+1=1+4+1=1:

- di moltiplicazione: 0-0=1-0=0-1=0; 1-1=1:

- di complementazione: 0=1,1=0.

Esse soddisfano banalmente le proprieta di assorbimento, distributive e le (11.4).

Esempio 11.1.2 [VETTORI BOOLEANI| L’insieme B3 delle colonne “booleane” a n componenti e a
valori in Bs

&1
&2
{ A ERAs Bz}
én
con le operazioni di somma, di prodotto e di complementazione definite per componenti
& m &+m &1 [m &m €1 &
3 N 72 §2 42 13 72 Eam2 & 3

costituisce un’algebra di Boole. Quali sono gli elementi 0 e 17

e ESERCIZIO 11.1.1 [INSIEME DELLE PARTI DI UN INSIEME] Dato un insieme non vuoto S, Iinsieme
P(S) delle parti di S, ovvero I'insieme i cui elementi sono i sottoinsiemi di S, & un’algebra di Boole
rispetto alle operazioni di unione insiemistica (= somma), intersezione insiemistica (= prodotto) e
complementazione ad S. Gli elementi 0 e 1 si identificano rispettivamente con I'insieme vuoto () e
con 'insieme S.

In un’algebra di Boole B si introduce la relazione binaria < ponendo a < b < a = ab
Essa e riflessiva, transitiva (infatti a = ab e b = be implicano a = a(bc) = (ab)c = ac) e
antisimmetrica (se a = ab e b = ab, allora a = b), quindi ¢ una relazione d’ordine parziale.
L’elemento 0 e il minimo di tutti gli elementi di B, nel senso che 0 < a, Va € B, mentre
I’elemento 1 ¢ il massimo.

[1%1)

211 prodotto & denotato con 0, piu semplicemente, giustapponendo i fattori; in altri contesti, e in
particolare quando si considera 1’algebra dei sottoinsiemi di un insieme, ’operazione di somma si denota
con “U” e quella di prodotto con “N”.
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e ESERcCIZIO 11.1.2 Si dimostri che a <b< b=a+b.
f Suggerimento: a=ab<b=b+ab=b+a;b=a+b< a=ala+b) =ab
e EsErCIzIO 11.1.3 (i) In BY risulta

&1 m
&2 M2
.
£n Tin

se e solo se m; = 0 = & = 0, Vi, ovvero se la presenza di una componente nulla nel secondo vettore
implica che la medesima componente sia nulla anche nel primo.

(ii) Sia a € B3 un vettore non nullo. La diseguaglianza x < a implica x = a oppure x = 0 se e solo
se il vettore a ha una sola componente unitaria.

Introduciamo una mappa f dai reali non negativi R nell’algebra di Boole a due elementi

0 ser=0
1 ser>0.

Notiamo che, se r1,72 € R, allora ri + rg =(r + 7"2)h e ri . rg = (T‘ﬂ“z)u. Cio significa

che si ottiene il medesimo elemento booleano eseguendo prima le operazioni di somma e
prodotto fra reali non negativi e applicando poi la mappa f§ al numero reale cosi ottenuto,
oppure trasformando prima gli operandi con la mappa f, ed eseguendo poi sui trasformati
le corrispondenti operazioni booleane.

La mappa f si estende alle matrici non negative, associando alla matrice non negativa

M = [m;;] € RE™ la matrice booleana M* € B5*™, nella quale I'elemento in posizione

u.j. E facile verificare che, se sostituiamo ai vettori di ingresso, stato e uscita u(t),

u:R+—>BQ:rHrh:{ (11.5)

(i,4) & m;
x(t), y(t) e alle matrici F, G, H, D i corrispondenti vettori booleani uf(t), x(t), y*(t) e le
matrici booleane F?, G%, HY, D", il sistema

x(t+1) = Fx(t) + Gha(¢)
yi(t) = H(t) + D*ul(t) (11.6)

inizializzato da x%(0) fornisce ad ogni istante 'immagine “booleana” delle grandezze de-
scritte dal sistema positivo (11.1), inizializzato da x(0).

La corrispondenza f che associa al sistema positivo ¥ = (F, G, H, D) il sistema booleano
¥ = (F “GE, HY, Du) non & iniettiva, poiché esistono infiniti sistemi positivi che danno
luogo al medesimo sistema booleano. Ciononostante, alcune proprieta di (11.1) possono
essere investigate direttamente su (11.6), poiché dipendono soltanto dalla presenza o as-
senza di elementi positivi nelle matrici e nei vettori coinvolti nella dinamica, ma non dai
loro particolari valori®.

Esempio 11.1.3 Le matrici positive

6 4

Fl:{5 5

| -

= N =
N = | =

hanno la medesima immagine booleana, ma la prima descrive un sistema instabile, la seconda uno
asintoticamente stabile.

3¢ quindi sono proprieta invarianti rispetto alla relazione di equivalenza fra sistemi positivi
(F,G,H,D) ~ (F,G,H,D) < (F',G" H* D% = (F% G* H" D%).
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Esempio 11.1.4 La proprieta che fra gli stati raggiungibili da 0 in ¢ passi ci sia un vettore
strettamente positivo dipende soltanto dalla coppia (F“,Gh)7 e non dalla particolare coppia non
negativa (F, Q) che ha per immagine (F*, G%). Infatti, se per effetto di un ingresso non negativo
u(0),u(l),....u(t — 1) si ottiene

t—1
x(t) = Z F'"77'Gu(o) > 0,

o=0

al tempo t si ottiene uno stato strettamente positivo sostituendo a F' e G due qualsiasi matrici non
negative aventi la medesima immagine booleana di F' e G .

e Esercizio 11.1.4 Se F, F' sono matrici non negative n x n e x(0),%(0) sono vettori di R%, in
evoluzione libera
(i) se F' > F' e x(0) > %(0) allora x(t) > %(t), Vt > 0;
(ii) se F* > F% e x%(0) > %%(0), non & in genere vero che x(t) > x(t), Vt > 0.
Le proprieta di un sistema positivo ¥ = (F, G, H) con m ingressi, n variabili di stato e p
uscite che possono essere studiate mediante il sistema booleano X! = (F "G H h), possono
esserlo anche ricorrendo a un grafo di influenza orientato, costituito da m + n + p vertici,
indiciati nelle variabili u;, z; e y.
Esso avra
- un arco con origine nel vertice u; e termine nel vertice z; se gj; # 0;
- un arco con origine nel vertice x; e termine nel vertice xj, se f; # 0;

- un arco con origine nel vertice zj e termine nel vertice yi se hgp 7 0.

L’informazione circa il sistema 3 fornita dal grafo di influenza & la stessa che forniscono
le matrici booleane F%, G%, H": la presenza di

- un arco da u; a x; equivale a g;; # 0 in G, quindi a g;;=1in G
- un arco da x; a xp equivale a fj; # 0 in F, quindi a f}hlj =1in F%

- un arco da xp a Yy equivale a hyp # 0 in H, quindi a hih =1in H"Y

Esempio 11.1.5 Al sistema autonomo

2 0 V3 0] [=
_ _ 7 1 0 0 ) X1 T2
x(t+1) = Fx(t) = 0 V3 0 2 s (11.7)
0 2 1 0 T4
rimangono associati la matrice booleana
1 010
o 1 1 0 0 T4 ;ms
F' = 01 0 1 (11.8)
01 1 0

Figura 11.1.1
e il grafo orientato riportato in figura 11.1.1.
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Esempio 11.1.6 Al sistema positivo con due in-
gressi ui e ug, tre variabili di stato x1,x2 e =3 e
un’unica uscita y, con matrici

F=

NN O

1
0
0

— N

2 1
, G=|0 0|, H=[0 5 0], w
0 V3

w

(11.9)
corrisponde il sistema booleano
u2

F=

=

1
0
0

— =

11
, G=1|0 0|, H=[0 1 0],
0 1

(11.10) Figura 11.1.2

e il grafo di influenza di figura 11.1.2.

Sul grafo di influenza si possono leggere alcuni caratteri del comportamento dinamico del
sistema:

- la presenza di un arco dal vertice u; al nodo x; corrisponde al fatto che, se la
componente u;(t) dell’ingresso e positiva, nellistante successivo la componente x;(t+
1) dello stato ¢ positiva;

- la presenza di un arco dal vertice x; al nodo y; corrisponde al fatto che, se la
componente z;(t) dello stato € positiva, nel medesimo istante la componente yy (%)
dell’uscita e positiva.

- la componente z;(t + 1) € positiva se e solo se x; ¢ vertice terminale di un arco con
origine in qualche vertice u; e I'ingresso u;(t) € positivo, oppure x; € vertice terminale
di almeno un arco con origine in qualche vertice z; e la componente x;(t) & positiva.

Un cammino di lunghezza h in un grafo orientato ¢ una successione di h archi del grafo,
tale che il vertice terminale dell’arco i-esimo & vertice iniziale dell’arco (i + 1)-esimo. Un
cammino con origine nel vertice s e termine nel vertice r si puo individuare assegnando la
successione dei suoi vertici s - vy — vy — ... = Up_1 — 7.
In particolare, se vertice iniziale e vertice finale coincidono (i.e. s = r), il cammino ¢
un ciclo, e un ciclo di lunghezza h € un circuito se h vertici sono distinti. In un grafo
con n vertici non ci possono essere circuiti di lunghezza maggiore di n e ogni cammino di
lunghezza n o maggiore comprende almeno un circuito.
Alla presenza di un elemento positivo nella posizione (r,s), r,s € {1,2,...,n} della
potenza F" della matrice F' = [f;;] corrisponde l'esistenza di cammini di lunghezza h
con origine nel vertice x5 e termine nel vertice z, del grafo. Infatti, il generico addendo
friiifirjia - fi,_,,s della somma che fornisce ’elemento di indici r, s in Fh

[Fh}r,s = Z fr,i1fi1,i2 s fih_l,s

01,02, ih_1

¢ positivo se e solo se sono positivi tutti i suoi fattori. Cio equivale all’esistenza di un arco
dal vertice x4 al vertice z;, ,, un arco dal vertice x;, , al vertice x;, ,, ..., un arco dal
vertice x;, al vertice x,, ovvero di un cammino

Ts — Tjy | — Tjy o — .. — Tj) — Ty

da x5 ad x,, passante per i vertici x;, |, @i, 5, ..., T,

Quindi [F"], s & positivo se e solo se nel grafo di F esiste almeno un cammino di lunghezza
h che connette x5 a x,. Il grafo di F si dice fortemente connesso se, comunque si scelgano
i vertici x5 e x,, esiste un cammino con inizio in xs e termine in x,.
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11.2 Matrici quadrate non negative: proprieta combinatorie

Le proprieta dei sistemi positivi che dipendono dal fatto che taluni elementi delle matrici
siano nulli e altri no, ma non dai loro particolari valori numerici reali, sono dette combina-
torie. Percio esse possono essere riferite indifferentemente alle matrici reali F, G, H, alle
corrispondenti matrici booleane F%, G, H?, o alla struttura del grafo di influenza.

11.2.1 Matrici di permutazione e matrici monomie

Se F' € una matrice in Rixn, il ricorso a trasformazioni di similarita non conserva in gene-
rale il suo carattere non negativo, come del resto un cambiamento di base nello spazio R"
indotto da una generica matrice invertibile non garantisce che le componenti di un vettore
conservino il segno passando dalla vecchia base alla nuova. Inoltre, per i sistemi positivi ¢
importante conservare non solo il carattere non negativo delle grandezze in gioco ma anche
il significato delle componenti dei vettori (a meno di cambiamenti di scala e/o permutazioni
delle componenti stesse) e, conseguentemente, la presenza o 'assenza di interazione fra
le variabili. La classe delle trasformazioni che possono applicarsi a F' per indagarne la
struttura e percio molto meno generale del gruppo di similarita e si riduce essenzialmente
alla classe delle trasformazioni di cogredienza, indotte dalle matrici di permutazione?, o a

quella, un poco piu estesa, delle similarita indotte da matrici monomie.

<1 2 ... n—1 n)
g = . . . .
21 12 ... lp—1 1In

associamo la matrice di permutazione

Alla permutazione

Ha- = [eil €, ... ein].
Essa trasforma la base “vecchia” (vq,va,...,v,) nella base “nuova”, ottenuta per permu-
tazione della vecchia,
(Vigy Vigy -5 Vi) = (V1, Ve, ..., v )1,
Il vettore rappresentato nella base vecchia dalla colonna x = [§1 & -+ & ]T ¢ rapp-
resentato nella base “permutata” dalla colonna .
&1 &1 e% &1 &ir
-t é':2 7 §2 _ e.ig §2 _ 5?2
Analogamente, la trasformazione lineare rappresentata rispetto alla base (vi,va,...,vy)
dalla matrice ' € R™ ", nella base permutata ¢ rappresentata dalla matrice
T
Cir fir fiz- fim fiir  fivia - fiviin
e; o o o
7 FI, — 2 for fo2 oo fon les, e, ... e ]= fivin  finia «++ finin
el fn,l fn,? fn,n fimh fimlz fimin

in

4Per ulteriori proprieta delle matrici di permutazione, si veda il par 14. dell’Appendice di Algebra
Lineare
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ottenuta applicando la medesima permutazione alle colonne e alle righe di F'. Due matrici
che differiscono per una similarita indotta da una matrice di permutazione (e quindi per
la medesima permutazione operata sulle righe e sulle colonne) si dicono “cogredienti”.
Ovviamente la cogredienza preserva le proprieta di non negativita delle matrici, nonché il
numero e il valore delle componenti positive di righe o colonne che si corrispondono nella
permutazione.

Le matrici monomie (dette anche matrici di permutazione generalizzate), si ottengono
dalle matrici di permutazione moltiplicandole (a destra o a sinistra) per matrici diagonali
positive non singolari. Una matrice monomia (che ha quindi per colonne e per righe vettori
monomi) ha struttura del tipo®

dy 0 0..0 1 0 0 0 di
do 1 0.0 0 d 0 0 O

M = AIl = = ., (11.11)
d. 1 0 0..10 dn_1 O

0 0 ..
0 dp .. O 0

=
3
(@)
—
(@)
o

con d; numeri reali positivi. II e AIl hanno la medesima immagine booleana e il medesimo
grafo di influenza. Si verifica direttamente che

- la matrice monomia AII puo essere espressa anche nella forma II(ITTAIT) = TIA,
dove la matrice diagonale A appare come fattore destro;

- il prodotto di due matrici monomie € una matrice monomia, dato che
(AlHl)(AQHQ) = Al(HlAQ)HQ = Al(HlAQH{)HlHQ

risulta essere prodotto della matrice diagonale Al(HlAQH{) e della matrice di per-
mutazione II;1Is;

- la matrice monomia AII ha un’inversa monomia, dato che (IIT A=1)(AIl) = I,,.

Le similarita indotte da matrici monomie corrispondono a permutazioni dei vettori di base
accompagnate da una moltiplicazione di ciascuno di essi per una costante positiva, quindi
ad un riordino delle variabili di stato e ad un cambiamento delle unita di misura utilizzate
per determinarne i valori.

Come si vedra nel seguito, le matrici monomie giocano un ruolo rilevante nello studio delle
proprieta strutturali (raggiungibilita etc.) dei sistemi positivi.

e ESERCIZIO 11.2.1 Si dimostri che se una matrice positiva non singolare F' € Rixn ha un’inversa X
positiva allora F' & necessariamente monomia.

f Suggerimento: Se FX = I,, e se gli elementi fin, fir della riga i-esima fossero entrambi positivi,
nella matrice X dovrebbe essere xn; = xr; = 0,Yj # i, quindi le righe h-esima e k-esima di X
risulterebbero proporzionali e X non sarebbe invertibile.

Per non appesantire la notazione, in (11.11) si fa riferimento a una specifica matrice di permutazione.
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11.2.2 Classificazione delle matrici non negative

Definizione 11.2.1 [MATRICI PRIMITIVE, IRRIDUCIBILI, RIDUCIBILI| Una matrice F in
RY*™ si dice
e primitiva se esiste un intero h > 0 per cui risulta F >> 0, ovvero se
[FM,s >0, Vrse{l1,2,...,n};

il pit piccolo esponente h in corrispondenza al quale si ha F* >> 0 & detto “esponente
di primitivita” di F’;

e irriducibile se in corrispondenza ad ogni r,s € {1,2,...,n} esiste un esponente h
(che dipende in genere da r ed s) per cui risulta

[Fh]rs > 0;

e riducibile se esistono r ed s tali che, per ogni h > 0, in F" si abbia
[FM,s =0, Yh>0.

Le matrici quadrate strettamente positive sono primitive, le primitive sono irriducibili
e l'insieme delle matrici riducibili complementa quello delle matrici irriducibili. D’altra

parte
1 1 0 1
aslia] nefl )

sono primitiva ma non strettamente positiva la prima e irriducibile ma non primitiva la
seconda.

Si osservi che una matrice quadrata F' con una riga o una colonna nulla e sempre riducibile,
poiché la riga o la colonna rimangono nulle in ogni potenza positiva della matrice.

e ESERCIZIO 11.2.2 [ESPONENTE DI PRIMITIVITA] (i) L’esponente di primitivita di una matrice primi-
tiva n X n puo essere maggiore di n: si consideri, ad esempio, la matrice

01 0 O
1 0
0 1
0 0

F=

=)
o O O

(ii*) L’esponente di primitivita non eccede (n — 1) + 1, ed esistono matrici primitive per le quali
esso raggiunge tale valore (cfr. Brualdi, Ryser “Combinatorial Matrix Theory”, Cambridge U.P.)
(iii) Se F' & primitiva con esponente di primitivita h, allora F"*! >> 0 e quindi, induttivamente,
F"3 > 0 per ogni j > 0.

~—

f Suggerimento per (iii): Ogni colonna di F é non nulla, altrimenti F" conterrebbe una colonna
nulla; inoltre [Fh"'l]rs si ottiene moltiplicando la riga r-esima, strettamente positiva, di F™ per la
colonna s-esima, positiva, di F'.

e EsERrciIZIO 11.2.3 [ELEMENTI DIAGONALI E PRIMITIVITA] Una matrice irriducibile F' avente un ele-
mento diagonale positivo & primitiva, ma esistono matrici primitive aventi diagonale nulla.

f Suggerimento: Si supponga [F]i1 > 0. Qualunque sia j, la definizione di irriducibilita implica
che, per qualche k > 0 si abbia [F*]1; > 0. Da [Fli1 >0 e [F*]1; > 0 seque allora [F**']1; > 0.
Quindi, se R ¢ abbastanza grande, F¥ ha strettamente positiva la prima riga. In modo analogo
si prova che, se C' ¢ abbastanza grande, FC ha strettamente positiva la prima colonna e, posto
M = max{R,C}, FM ha strettamente positive la prima riga e la prima colonna. Allora F?M ¢
strettamente positiva. Ma F'=[ex +e3 e +es e1+ ez] ha diagonale nulla ed & primitiva.
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e ESERcCIzIO 11.2.4 Sia F € R}*".
(i) Se per qualche A > 0 una colonna di F" & nulla, allora F & riducibile.
(ii) Se F' & irriducibile e per qualche A > 0 una colonna di F* & strettamente positiva, F' & primitiva.

t Suggerimento (i): Se la colonna j-esima di F" ¢ nulla, é nulla la colonna j-esima in tutte le
potenze successive di F'. Se F' fosse irriducibile, per qualche k > 1 risulterebbe [Fk]j]' > 0, quindi
anche [F**);; > 0, v = 1,2,.... (i) Se la colonna j-esima & strettamente positiva in F", lo
¢ in tutte le potenze successive di F. Per ogni i # j, esiste k > 0 tale che [F¥];; > 0, quindi
Fltk — ph R ha strettamente positive la i-esima e la j-esima colonna. Iterando la procedura. ..

La seguente proposizione riporta alcune importanti caratterizzazioni della irriducibilita.

Proposizione 11.2.2 [CONDIZIONI DI IRRIDUCIBILITA] Una matrice F € R di di-
mensione n > 2 é irriducibile se e solo se vale una qualsiasi delle condizioni equivalenti
sottoelencate:
1) [DEFINIZIONE 11.2.1] per ogni coppia di indici (r, s) esiste un esponente h > 0 per
cui risulta [F"],s > 0;
1’) [GRAFO DI INFLUENZA] il grafo di infuenza della matrice F' é strettamente connesso;

2) [NON TRIANGOLARIZZABILITA] non esiste alcuna matrice di permutazione II per cui

si abbia _
o 0 } : (11.12)

F=T"FII = _
[le Foo

dove FH e Fgg sono sottomatrici quadrate non vuote;
3) [AZIONE DI F' SUI VETTORI POSITIVI] se il vettore y € R!} ha k componenti positive,
con 0 < k < mn, allora (I, + F')y ha almeno k + 1 componenti positive;
4) [POTENZE DI F E VETTORI STRETTAMENTE POSITIVI] (I, + F+ ...+ F" 1y > 0
per ogni vettore positivoy € R'} ;
4’) qualunque sia k > 0, (F¥ + FF1 4+ FF7=1)y > 0 per ogni vettore positivo
y € RY;
47) esiste k > 0 tale per cui (FF 4+ FF1 4 4 FF7=1)y > 0 per ogni vettore positivo
y € RY;
5) [POTENZE DI F' E MATRICI STRETTAMENTE POSITIVE] la matrice (I+F+...+F" 1)
¢é strettamente positiva.
5°) per ogni scelta di k > 0, la matrice F¥ 4+ FF+1 4 4 FFn=1 ¢ strettamente positiva;
57) esiste k > 0 tale per cui la matrice Fky pktly 4 FRn=l & strettamente positiva;

Prova (1) & (17) & immediata dalle definizioni.
(1) = (2) Verifichiamo che la triangolarizzabilita, ovvero la negazione di (2), implica la
negazione di (1). Se per qualche matrice II,, associata a una permutazione

(1 2 ... n—1 n)

o=|. . . I

11 19 ... In—1 in

nella scomposizione a blocchi (11.12) fosse nullo il blocco Fja, anche in FF = HZF"/’HU,
Vk > 0, sarebbe nullo il blocco corrispondente ed esisterebbero interi 7, s per i quali sono

tutti nulli gli elementi in posizione (r, s) delle matrici ITZ F*II,. Allora in tutte le matrici
F* sarebbero nulli gli elementi in posizione (o(r), o (s)).
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(2) = (3) Sia II una matrice di permutazione tale che le prime n — k coordinate di
x := Ily siano nulle, e siano positive le ultime k, indicate collettivamente con il blocco
colonna x9 >> 0:

X9 k

Evidentemente il numero degli zeri in (I, + F)y =y + F'y > y non puo essere piu grande
del numero n — k degli zeri di y.

D’altra parte, se il numero degli zeri in (I, + F')y fosse eguale a n — k, per ogni i avremmo
che 'annullarsi di una coordinata di y implica ’annullarsi della medesima coordinata di
Fy. Di conseguenza, 0 = (Ily); = x; implicherebbe 0 = (I[IFy); = (IIFTITx);.

x:Hy:[O] n—k'

Percio, se nel vettore x sono nulle tutte e sole la componenti di indice i = 1,2,...,n — k,
nel vettore IIFIITx sono nulle le componenti di indice i = 1,2,...,n — k e, ponendo
F :=TFTT, cio si traduce nella condizione
_To Fiy Fpl o0 0] n—k
F = | = _ = ) 11.1
|: X9 :| |: F21 F22 X9 * k ( 3)

Poiché x5 & strettamente positivo, (11.13) implica Fis = 0 e la riducibilita di F.

(3) = (4) Proviamo che, se (I, + F + ...+ F")y ha k componenti positive e k < n, allora
(In+F+...+ F'M1)y ne ha k > k + 1. Per il punto 3, cid & vero se h = 0. Procediamo
allora per induzione rispetto ad h. Il vettore (I, + F + ...+ F"1 4 Fh*2)y ha gli stessi
zeri di

(In+2F + ...+ 2F"L 4 PPy — (1, + F)[(I, + F + ... + Fifhy], (11.14)

quindi, se k£ < n, esso ha almeno una componente positiva in pitt di (I, + F +. ..+ F'"1)y.
E ora evidente che (I, + F + ...+ F"~2 4 F"~1)y & strettamente positivo.

(4) = (4’) Per ogniy > 0, se vale la (4) vale anche F'y > 0. Altrimenti, se fosse F'y = 0,
day+ Fy+ ...+ F" 'y > 0 seguirebbe y >> 0, quindi sarebbe nulla la matrice F, e
cio ¢ incompatibile con (4).

Procedendo per induzione, per ogni y > 0 e per ogni k > 0 il vettore F*y = F(Fk-ly)
& positivo, quindi ¢ strettamente positivo il vettore (I, + F + ... + F"~ V) Fky = (FF +
Fk+l N Fk:-i-n—l)y‘

(4’) = (47) Ovvio.

(47) = (5”) Per i = 1,2,...,n, scegliendo in (4”) y = e; si verifica che la i-esima colonna
di F*¥ 4+ Fkt1 4 4 Fkn=1 & strettamente positiva.

(5”) = (5) Se un elemento [I,, + F +...+ F" 1], ; fosse nullo, sarebbero nulli [I], s, [F];.s,
<oy [F™" 1, 5. Per il teorema di Cayley Hamilton, ciascuna delle matrici F™, F™"*1 ... pud
essere espressa come combinazione lineare di I, F, ..., F" !, quindi I'elemento di indici r, s
in ciascuna di esse sarebbe nullo, perché ottenuto combinando [I],s, [Flys,- - -, [F™ s,
che sono tutti nulli, e F* + F*+1 4 4+ F*7=1 non sarebbe strettamente positiva.

(5) = (5") Se I, + F +...+ F" 1 > 0, la matrice F non ha colonne nulle. Quindi risulta
(I, + F 4 ...+ F"")F > 0 e, induttivamente, (I, + F + ...+ F"")F* > 0, Vk > 0.
(5°) = (1) Nella (5°) si scelga k = 1, ovvero (F + F? 4+ ...+ F") > 0. Allora, per
ogni scelta di r e di s, una almeno delle matrici F, F2,..., F™ ha positivo I’elemento in
posizione (r, s), ossia [F"], s risulta positivo per qualche h compreso fra 1 e n. [ |
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e ESERCIZIO 11.2.5 Se F' & una matrice non negativa n X n e [Fh]TS =0per h=0,1,...,n—1, allora
[F"],s = 0 per ogni h. Quindi F' & riducibile.

# Suggerimento: La colonna s-esima della matrice I + F 4 ...+ F"~1 non & strettamente positiva.
e EsERrcIZIO 11.2.6 Sia F' una matrice non negativa n X n e sia v € R} un vettore positivo.

(i) Se i vettori F"v, h = 1,2,...n, hanno nulla la prima componente, ossia (Fv); = (F?v); =
...=(F"v); =0, allora F' & riducibile.

(ii) Se il vettore w = Fv + F2?v + ...+ F™v ha nulle le componenti in posizione i1,42,...,i, €
positive le altre, allora in I’ & nulla la sottomatrice avente 1,12, ...,4, per indici di riga e gli altri
elementi dell’insieme {1,2,...,n} per indici di colonna.

# Suggerimento: (i) la riducibilita seque dal punto (4’°) della proposizione 11.2.2, scegliendovi k = 1.
(i) il vettore F'w, combinazione a coefficienti positivi di tutte le colonne di F' con indice diverso da
11,42, ...,1r, ha nulle tutte le componenti in posizione i1,42,...,i,. Quindi le colonne suddette di F'
hanno componenti nulle nelle posizioni 1,12, ..., %r.

e EsERCIzIO 11.2.7 Se F € R}*™,n > 2 ¢ irriducibile, (i) F pud avere qualche autovalore nullo?
(Sugg.: si consideri ' = 117) F pud essere nilpotente ? (Sugg.: si consideri il punto (5°) della
prop. 11.2.2) F — diagF puo essere riducibile? (Sugg.: si consideri il punto (2) della prop. 11.2.2)

Anche la primitivita, come l'irriducibilita, e riconducibile a alla struttura del grafo di F.
Per verificarlo, supponiamo che F' sia una matrice n x n irriducibile, avente quindi un grafo
di influenza fortemente connesso. Se scegliamo nel grafo un vertice x; e consideriamo le
lunghezze dei cicli passanti per z; , I'insieme N; di tali lunghezze ¢ additivamente chiuso.
Infatti, se gli interi 11 e vy appartengono a N; perché sono lunghezze di due cicli v
e 2 passanti per x;, il ciclo ottenuto percorrendo, a partire da z;, prima v; e poi 72 ha
lunghezza vy + s, quindi v +1v5 € N;. Per studiare gli insiemi N, tornera utile premettere
alcune proprieta dei numeri interi.

Se a # 0, con la notazione alb (“a divide b”, o “a e divisore di b”) si intende che esiste
un numero z per cui b = az. Il massimo comun divisore (MCD) di un insieme non vuoto
N C N ¢ un divisore d di tutti gli elementi di N, dotato della ulteriore proprieta che ogni
altro divisore comune d’ di N divide d, ossia soddisfa la condizione d'|d.

e EsErcizio 11.2.8 Se d & il MCD degli elementi di un insieme infinito A/ C N, & anche MCD degli
elementi di qualche sottoinsieme finito di A"

Il lemma seguente, attribuito a Schur, stabilisce che ogni sottoinsieme non vuoto e addi-

tivamente chiuso di N contiene “quasi tutti” i multipli del suo MCD.

Lemma 11.2.3 [ScHUR| Sia N' C N un insieme di interi positivi, non vuoto e chiuso

additivamente, e sia d il massimo comun divisore degli elementi di N'. Allora esiste un

intero K > 0 tale che kd € N per ogni k > K.

PROVA Supponiamo dapprima d = 1. Se 1 € N, il risultato & ovvio e N/ = N. Altrimenti

esiste un sottoinsieme {ni,na,...,ns} di NV, finito e di cardinalitd minima, tale da aversi
1 = MCD{ny,na,...,ns}. (11.15)

La (11.15) equivale all’esistenza di f combinatori interi c1, ca, ... cs, parte positivi e parte
negativi, soddisfacenti cini + cong + ... + ¢gny = 1, ovvero, supponendo® positivi
€1,C2,...Cp, h < f, e negativi gli altri combinatori,

(ciny +cang + ...+ cpnp) — (—Ch1Mhs1 — Chp2Nhy2 + ... —cpng) =a—b=1

SBasta, eventualmente, permutare gli elementi della combinazione.
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Poiché N & additivamente chiuso, a e b appartengono a A'. Ponendo K = b(b — 1), ogni
intero k > K soddisfak=qgb+rcon 0 <r<b—1eq>0b—1, quindi

k=(q—rb+rb+r=(q—rb+rb+1)=(¢—r)b+ra (11.16)

appartiene a N, in quanto somma di elementi di .

Supponiamo ora d > 1. Gli elementi di A sono divisibili per d, quindi I'insieme N’ :=
n

{E,n € N} & costituito da interi positivi che hanno 1 come MCD, ed & additivamente

chiuso. Poiché esiste K > 0 per cui k > K implica k& € N/, gli interi kd appartengono a
N per ogni k > K. [ |

Lemma 11.2.4 [CICLI E CIRCUITI IN UN GRAFO ORIENTATO FORTEMENTE CONNESSO]
Sia G un grafo orientato e fortemente connesso, di vertici x1, o, ... Zn.
Se 3 & il MCD delle lunghezze di tutti i cicli di G e 3; & il MCD delle lunghezze dei cicli
passanti per il vertice x;, allora
i) 3=34;
ii) esiste K > 0 tale per cui, se k > K, per ogni vertice x; di G passa qualche ciclo di
lunghezza kj;

iii) 3 & il MCD delle lunghezze dei circuiti di G.

PRrOVA (i) Bastera verificare i punti seguenti:
o i3, i=12...,n (11.17)

Infatti i cicli per x; sono un sottoinsieme dell’insieme di tutti i cicli di G. Allora 3, divisore
comune delle lunghezze di tutti i cicli, ¢ un divisore comune delle lunghezze dei cicli per
x;, quindi un divisore del MCD j3; delle lunghezze dei cicli per ;.

e 31 =3=...=3:=d (11.18)

Consideriamo due vertici x; # x;. L’ipotesi di con-
nessione implica 'esistenza di un cammino orien-
tato m da x; a x;, di lunghezza p, e di un cammino
orientato 7’ da x; a x;, di lunghezza p’. Se ~; ¢ un
arbitrario ciclo per x;, di lunghezza v, 3; divide sia
p+v+p, siap+p, quindi 3; |v. Ma allora, per
I'arbitrarieta del ciclo v;, 3; ¢ un divisore comune
delle lunghezze di tutti i cicli per z;, quindi divide il
MCD di tali lunghezze, ovvero 3; | 3;. Scambiando

i ruoli di x; e di x;, si conclude che 3;|3;. Quindi Figura 11.2.1
3i = 35, Vi,j esipuo porred =31 =...=3p.
o (11.19)

Ogni ciclo v di G passa per almeno un vertice x;, quindi la sua lunghezza v soddisfa 3; | v,
quindi d|v. Allora d, essendo un divisore comune delle lunghezze di tutti i cicli del grafo,
divide il MCD j di tali lunghezze.

Da (11.17-11.19) si conclude che 3 = 3; = d.
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(ii) L’insieme N; delle lunghezze dei cicli per x; & additivamente chiuso, quindi per il
lemma di Schur esiste un intero K; > 0 tale che, per ogni k > K;, k3; = k3 € lunghezza
di qualche ciclo per x;. Basta allora scegliere K = max;—1,., K; per concludere che, se
k > K, per ogni vertice x; passa qualche ciclo di lunghezza k3; = k3.

(iii) Sia ¢ il MCD delle lunghezze dei circuiti di G. Poiché ogni circuito ¢ un ciclo, 3| ¢.
D’altra parte, ogni ciclo v puo essere decomposto (come?!) in un numero finito f di

circuiti elementari e la sua lunghezza v ¢ somma delle lunghezze cq,ca, ..., cy dei circuiti
componenti. Dac|¢;, ¢ = 1,2,...tsegue ¢| v, quindi ¢ & un divisore comune delle lunghezze
di tutti i cicli del grafo e ¢|3. Allora ¢ = 3. [ |

Proposizione 11.2.5 [PRIMITIVITA E CICLI DEL GRAFO DI INFLUENZA]| Una matrice
positiva F' é primitiva se e solo se il suo grafo di influenza é fortemente connesso e il MCD
3 delle lunghezze dei suoi circuiti é 1.

PROVA Supponiamo dapprima che il grafo sia fortemente connesso (i.e. F' sia irriducibile)
e che sia 3 = 1. Come conseguenza del punto (ii) del lemma 11.2.4, esiste K > 0 tale
che, se k > K, per ogni vertice x; passa qualche ciclo di lunghezza k. D’altra parte, per
I'ipotesi di connessione, comunque si scelgano z; e x; esiste un cammino 7 che va da z; a
x;. Se p ne ¢ la lunghezza, concatenando 7 con un ciclo per x; possiamo concludere che
esistono cammini da z; a x; di lunghezza p + k, per ogni k& > K. Quindi nella matrice
FPtE Pelemento [F 7’+k] ji © positivo per ogni k& > K. Il ragionamento, ripetuto per ogni
coppia di vertici, porta a concludere che le potenze della matrice F' sono strettamente
positive quando I’esponente & abbastanza elevato.

Viceversa, supponiamo F primitiva (e, percio, irriducibile). Per h abbastanza grande, F"
e F"*1 sono strettamente positive, quindi gli elementi diagonali soddisfano [Fh]“ >0e
[Fh*1],; > 0. Poiché nel grafo di influenza di F passano per ciascun vertice z; sia cicli di
lunghezza h che di lunghezza h + 1, il MCD delle lunghezze dei cicli per x;, e quindi di
tutti i cicli, vale 1. |

Il ricorso a trasformazioni di cogredienza consente di approfondire lo studio delle matrici
riducibili e di quelle irriducibili, chiarendo il carattere della loro azione sui vettori di
R”. La forma normale delle matrici riducibili discende da considerazioni di carattere
combinatorio e verra discussa immediatamente, mentre la forma ciclica di Frobenius delle
matrici irriducibili sara discussa in un paragrafo successivo, basandosi su risultati che
esporremo piu avanti.

Proposizione 11.2.6 [FORMA NORMALE DI UNA MATRICE RIDUCIBILE] Sia F € R}*"
una matrice non negativa riducibile di dimensione n > 1. Esiste allora una matrice di
permutazione I che per cogredienza porta la matrice F' nella seguente “forma normale”

_ F171 i | -
0 Fyo |
(0]
0 |
F=m'rr=| 0 O - Fan : - (11.20)
* * * ] Fh+l,h+1
* * * %
* * * ’ * * Fkk |
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in cui ciascun blocco diagonale Fi,i, 1 =1,2,...,k > 1, & una matrice irriducibile, o la
matrice nulla di dimensione 1 per 1. Inoltre, se risulta h < k, in ciascuna riga a blocchi
successiva alla h-esima uno almeno dei blocchi fuori diagonale e indicati con x & una
matrice positiva’. I blocchi Fi;, 1=1,2,...,h, sono detti “blocchi isolati”.
ProvA Poiche F e riducibile, per la proposizione precedente esiste una matrice di per-
mutazione II; che per cogredienza la riduce alla forma (11.12)
A 0

Y FiI, = :

Se uno dei blocchi diagonali, p.es. il blocco C', ha dimensione maggiore di 1 ed e riducibile,

esiste un’ulteriore matrice Il che permuta i vettori di base che interessano il blocco C,
riducendo quest’ultimo per cogredienza a forma triangolare

A ] 0 0
A 0
(IGODFILIL) = 15 | = — - | = | D o )
~ | C
* | * E

e cosl via... Il procedimento di riduzione ha termine quando tutti i blocchi diagonali sono
irriducibili o sono matrici nulle di dimensione 1 x 1.
Supponiamo infine che

- siano nulli tutti i blocchi in posizione (i, ), con i < T e j < 1;

- il blocco in posizione (T',7T') abbia alla sua sinistra alcuni blocchi non nulli, ovvero
esistono alcuni blocchi non nulli in posizione (T, j) con j < T

- esista un ulteriore blocco in posizione (T'+ v,T 4+ v), v > 1 alla cui sinistra , ovvero
nelle posizioni (T + v, j), j < T + v, i blocchi sono tutti nulli:

Fia B

0 Fyo

0 0 7

* * FT,T

* * ... *

0 0 - 0 0 Frorw

* x e % * *
L x x . x % * coo Frg ]

Permutando righe e colonne del blocco T-esimo con quelle del blocco (T + v)-esimo, si
ottiene che tutti i blocchi in posizione (i,j), con ¢ < T e j < i, diventino nulli. 1l
procedimento puo essere iterato un numero finito di volte, fino all’ottenimento della forma

normale (11.20). [ ]

"e quindi non nulla.
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Esempio 11.2.1 [MODELLO STATICO DI LEONTIEF E IRRIDUCIBILITA] La versione statica del model-
lo di Leontief ipotizza un sistema economico, disaggregato in n settori Si,Sa,...S,, ciascuno dei
quali produce articoli di un’unica tipologia. Si assume che

- la produzione in ciascun settore Sy richieda la trasformazione di articoli prodotti nei vari settori
S; dell’economia, in quantita che dipendono linearmente dal livello di produzione nel settore Sk;

- la quota di produzione in ciascun settore, non destinata alla trasformazione da parte degli altri
settori, sia assorbita dalla domanda dei consumatori “esterni” (cioé¢ non appartenenti ai settori).

Indichiamo con

e z; la produzione nell’unita di tempo del settore S;, misurata in unita di misura opportune (numero
di oggetti, di metri cubi, di tonnellate, di container, etc.)

o ;i il coefficiente tecnologico che indica quante sono le unita di prodotto del settore S; necessarie
per produrre una unita di prodotto del settore Sk,

e d; la domanda esterna, nell’'unita di tempo, dell’articolo prodotto dal settore .S;.

Otteniamo allora le relazioni
xizztikxk-‘rdi, 1=1,2,...,n,

k
che esprimono il livello di produzione del settore S; necessario per soddisfare le richieste di tutti i
settori e la domanda esterna. Tali relazioni possono essere espresse in forma compatta, introducendo
i vettori non negativix = [z1 2 ... Zn ]T ,d=[d1 d2 ... dn ]T e la matrice non negativa
o B .
T = [tlk], tramite 1’equazione x = Tx +d. (11.21)

Gli elementi non nulli della colonna k-esima della matrice T' corrispondono ai settori “di ingresso”
a Sk, nel senso che i loro prodotti sono necessari per la produzione di Sk. I valori numerici della
colonna rappresentano le unita di prodotto dei vari settori necessarie per ottenere un’unita di Sk.
Gli elementi non nulli della riga i-esima corrispondono invece ai settori “di uscita” da S;, cioe quelli
verso cui si indirizza la produzione di S;. Alla matrice T' sono state attribuite varie denominazioni:
matrice della tecnologia, matrice ingresso-uscita, matrice dei consumi.

Ipotizzare che T sia irriducibile equivale a supporre (cfr. proposizione 11.2.2, punto 2) che nessun
sottoinsieme proprio di {S1,52,...,S5,} sia “autosufficiente”, ovvero possa funzionare senza utiliz-
zare a sua volta prodotti provenienti da settori non appartenenti al sottoinsieme. Un’interpretazione
analoga ¢ fornita dal punto 3 della medesima proposizione: la produzione degli articoli di v settori
economici, con v < n, si avvale di almeno un articolo prodotto dagli altri settori.

Indichiamo ora con py, e uy il prezzo e l'utile unitari degli articoli prodotti dal settore Si. Il prezzo di
un articolo prodotto dal settore Sj € somma dei costi che il settore affronta per produrlo e dell’utile

che consegue nel commercializzarlo: pr = >, pitix +ur, k=1,2,...,n.
Ponendo pT = [p1 P2 .. Dnl, ul = [ur w2 ... un], otteniamo
p =p'T+u". (11.22)
In un mercato equo, € ragionevole attendersi che offerta x e domanda d soddisfino ’equazione
u'x=p'd, (11.23)

ovvero che l'utile totale netto conseguito nell’insieme di tutti i settori eguagli ’ammontare comp-
lessivo pagato dal mercato per gli articoli consumati.

11.3 Catene cicliche

Al punto (3) della proposizione 11.2.2 si ¢ affrontato il problema di quale sia la struttura
booleana della catena “ciclica” di vettori non negativi

g, Fg, F’g, F'g,... (11.24)

ottenuti a partire da un vettore g > 0, quando la matrice F' & irriducibile®.
In questo paragrafo intendiamo ampliare I'indagine sulla struttura booleana delle catene
cicliche (11.24), senza porre limitazioni a priori sulla natura della matrice nonnegativa F'.

8Si tratta dei generatori dello spazio ciclico < F|g > considerato in Algebra Lineare (cfr. A.6.3)
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Per ogni vettore g € R}, denotiamo con supp(g) il “supporto” di g, ovvero il sottoinsieme
di {1,2,...,n} costituito dagli indici delle componenti non nulle di g

k €supp(g) < [g]x > 0.
E chiaro che, per qualsiasi g € R e per qualsiasi F' € R*", si ha
supp(g) C supp(g + Fg) C supp(g + Fg+ F?g) C ... (11.25)

Nella proposizione che segue riassumiamo alcune proprieta della catena (11.24).

Proposizione 11.3.1 [STAZIONARIETA DEI SUPPORTI] Siano F' € R'Y*" una matrice non
negativa e g € R} un vettore non negativo.

i) Se supp(3__, F'g) = supp(>_t Fig), allora supp(3/1 ) Fig) = supp(Z;’;FO2 Fig)
e la successione (11.25) & stazionaria almeno dall’insieme supp(>_;_, F'g) in avanti.

ii) La catena (11.25) é comunque stazionaria dall’insieme supp(Z:;‘:_O1 Fig) in avanti.

iii) Se ¢ € supp(F"*"g) per qualche h > 0, allora £ € supp(zzzol F'g), ovvero se risulta
positiva la componente (-esima di F"t"g, la medesima componente & positiva in uno
almeno fra i vettori g, Fg,..., F" 'g.

iv) Se in n vettori consecutivi di (11.24) é nulla la componente i-esima
(Fhg); = (F'*1g); = ... = (F'"*""g), = 0, (11.26)

la componente i-esima é nulla anche in tutti i vettori successivi F'"t"g, Fhtntlg
Quindi, se n vettori consecutivi di (11.24) sono nulli, lo sono anche tutti i vettori
successivi.
PrOVA (i) Se supp(Y7_, F'g) = supp(3>.11y Fig), verifichiamo che (I + F + ...+ F” +
Frhge (I+F+...+ F' 4+ F"*2)g hanno le medesime componenti nulle. A tale scopo,
basta notare che i quattro vettori

(I+F+...+F +Ft 4 pridyg,
(I+F+...+F'+F" g+ F(I+F+...+F + F*hg,
I+F+..+F)g+FI+F+...+F")g,
(I+F+...+F" +F"thg

hanno le medesime componenti nulle.

(ii) & banalmente vera se g = 0. Se g # 0, (11.25) & una successione monotona di
sottoinsiemi non vuoti di {1,2,...,n}, quindi deve presentare entro il passo n-esimo un
punto di stazionarieta e dopo tale passo, per il punto (i), essa rimane costante. Per tutti
i vettori successivi a Z?:_ol F'g risulta allora

n—1+h n—1
supp( Y F'g) =supp(>_ F'g) h>0. (11.27)
i=0 =0
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(iii) Se la componente f-esima di F"™*" & positiva, £ € supp(zgjoh F'g), quindi per (11.27)

¢ € supp(Xi5y Flg).
(iv) Posto v = F'g, la (11.26) equivale a (v); = (Fv); = ... = (F""'v); = 0. Per (ii)
risulta allora (F"*tkv); =0, k=0,1,..., e quindi F"*"**kg =0, £k =0,1,.... [ |

e EsErciziO 11.3.1 Si provi I'implicazione (5”7) = (5) nella proposizione 11.2.2 senza ricorrere al
teorema di Cayley-Hamilton.

Il seguente risultato ¢ di fondamentale importanza nello studio della raggiungibilita dei
sistemi positivi.

Proposizione 11.3.2 [VETTORI MONOMI IN UNA CATENA CICLICA: TEOREMA DI COXSON-
LARSON] Siano F € R}™" una matrice non negativa e g € R, un vettore positivo. Se

per qualche k > n il vettore F*g & ¢-monomio, allora uno almeno fra g, F'g,... F" g ¢é
£-monomio a sua volta.

PROVA Dimostreremo 1’asserto nel caso in cui sia k = n, verificando che, se g & positivo
ed F™g & f-monomio, allora & /-monomio almeno uno fra g, Fg, ..., F" g.

Nel caso in cui sia k > n, bastera porre allora § = F*~"g. Essendo /-monomio il vettore
F"g, per qualche v < n sard f-monomio il vettore F¥g = FF—("—")g — Fhg con h =
k— (n—v)<k. Se h <n si conclude, altrimenti basta iterare il ragionamento.
Assumiamo quindi che il vettore F"g sia f-monomio e riformuliamo il problema riferendoci
al grafo di influenza della coppia (F,g). Esso consta di 1 4 n vertici, che identificheremo
con gli elementi dell’insieme {0,1,2,...,n}, e degli archi orientati che li connettono:

- c’eun arcoda 0 a j > 0 se e solose g; >0,
- c’eun arcoda j > 0ai >0 seesolose f;; >0.
Conseguentemente, se S C {1,2,...,n} denota il supporto di g,

- il supporto del vettore F'g (del vettore F"g, ¥r > 0) ¢ costituito dall’insieme dei
vertici j ai quali si perviene con un cammino di un arco (di r archi) che nel grafo®
di F' parta dagli elementi di S;

- Tipotesi che F"g sia /-monomio corrisponde ad assumere che nel grafo di F' esistano
cammini di lunghezza n con inizio in S, e che tali cammini si concludano tutti al
passo n-esimo nel vertice /;

- provare che F”g ¢ {-monomio per qualche v > (0 equivale a provare che, nel grafo di
F, esistono cammini di lunghezza v con inizio in S e che tali cammini si concludono
tutti nel vertice ¢.

Per procedere, ci serviremo del seguente

Lemma 11.3.3 [CIRCUITI NEL GRAFO DI F] Nelle ipotesi della proposizione 11.3.2, nel
grafo di F

i) ogni cammino di n (o pit1) archi contiene un circuito.

9ovvero nel grafo con n vertici {1,2,...,n} associato alla sola matrice F
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Se poniamo S = {j : j € supp(g)} e se F"g é {-monomio, allora
ii) ogni circuito ~y facente parte di un cammino m con inizio in S include il vertice ¢;

iii) i circuiti che fanno parte di cammini con inizio in S hanno tutti la medesima
lunghezza c (i.e. includono il medesimo numero c di vertici distinti).

PrROVA DEL LEMMA 11.3.3 i) Ovvio: il grafo di F ha n vertici, quindi almeno uno di essi
viene incontrato due volte.

1) Supponiamo che qualche circuito v non passi per ¢, pur facendo parte di un
cammino 7 con origine in s € S.
Consideriamo il cammino 7* di lunghezza minima che connette s a uno qualsiasi dei vertici
di ~; ovviamente 7" non attraversa due volte lo stesso vertice, altrimenti potrebbe essere
sostituito da un cammino piu breve. Quindi 7* ha lunghezza inferiore a n e potrebbe
essere proseguito indefinitamente ( in particolare fino al passo n-esimo) “ciclando” su 7.
Avremmo costruito in tal modo un cammino con origine in S e che al passo n-esimo non
transita per /.

Figura 11.3.1

i7i) Siano vy e 7' due circuiti, di lunghezza rispettivamente ¢ e ¢/, facenti parte entrambi
di cammini con inizio in S, e supponiamo sia ¢ > ¢’. Per il punto precedente v e 7' hanno
almeno il vertice £ in comune. Sia ora p un cammino di lunghezza minima r, certamente
minore di n, che congiunge un vertice di S con ¢ e consideriamo due diversi completamenti
di p a un cammino di n passi.

Figura 11.3.2

Il primo completamento 7’ consiste nel proseguire da ¢ percorrendo il circuito pilt breve
~" una sola volta e passare poi a descrivere fino al passo n-esimo il circuito pitt lungo; il
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secondo, 7, prevede invece di proseguire da ¢ fino al passo n-esimo rimanendo sul circuito
piu lungo . Poiche, in base all’ipotesi, dopo n passi ogni cammino con origine in S
transita per ¢, i due cammini 7’ e 7 includono un numero intero di copie dei due circuiti
in questione e soddisfano quindi, per opportuni interi a e b,

n = r+cd+bc b>0,
n = r+ac a>0 (11.28)
Si ottiene allora ¢ = (a — b)c, relazione evidentemente assurda essendo ¢ > ¢/ |

Ritorniamo ora alla prova della Proposizione 11.3.2.e dimostriamo che nel grafo di F' ogni
cammino 7 che abbia inizio nell’insieme S e lunghezza n — ¢ (dove ¢ & stato definito nel
lemma 11.3.3) termina nel vertice /.

Poiché F"g £ 0 esistono certamente cammini di lunghezza n — ¢. con origine in S e
lunghezza n — c¢. Supponiamo, per assurdo, che uno di essi, 7, abbia ¢’ # ¢ come vertice
terminale.

e Se i vertici di 7#* non sono tutti distinti, 7#* include qualche circuito v, che sara

descritto v > 1 volte e che, per il lemma 11.3.3, ha lunghezza c. Allora il cammino 7 che
si ottiene da 7* descrivendolo v + 1 volte inizia in S, ha lunghezza n e non termina in ¢,
e cio contraddice I'ipotesi che F"™g sia f~-monomio.

El

Figura 11.3.3

e Se i vertici di 7* sono tutti distinti, bastera considerare un arbitrario circuito ~ di
lunghezza ¢ (Pesistenza di v & garantita dal lemma 11.3.3). Poiché il grafo ha n vertici,
uno almeno di essi, j, appartiene sia a 7* che a v e il cammino che si ottiene descrivendo
7* fino a 7, poi il circuito 7 e infine 7* da j a ¢’ ha lunghezza n, ma non termina in £.

gl

& « <« Dy

Figura 11.3.4



11.4. PROPRIETA SPETTRALI : TEOREMA DI PERRON 463

Abbiamo cosi verificato che ogni cammino con origine in S e lunghezza n — ¢ termina in
£, quindi il vettore F"~¢g ¢ f-monomio. |

e EsErcizio 11.3.2 Siano F € R}*™ e g € RY. Si verifichi che

i) se F*g & un vettore f-monomio per qualche k > 0, la matrice F' contiene almeno una colonna
/-monomia.

ii) se l'insieme g, F'g,... F""'g, ... contiene vettori f~-monomi per ogni £ compreso fra 1 ed n, allora
FT & cogrediente a una matrice compagna e g & vettore monomio. E vero il viceversa?

e EseRrcizio 11.3.3* Con riferimento alla dimostrazione della Proposizione 11.3.3, si supponga che
i cammini che hanno inizio nell’insieme S raggiungano soltanto n’ < n vertici del grafo di F. Si
verifichi che

i) L:=supp(g+ Fg+ ...+ F" 'g) consta esattamente di n’ elementi;
ii) se FFg & f-monomio, allora & tale uno almeno fra i vettori g, F'g, . .. F"ng;

iii) ogni colonna di F' con indice corrispondente a un elemento di supp(g) ha per supporto un sottoin-
sieme di L.

11.4 Proprieta spettrali : teorema di Perron

In questo paragrafo e nei due successivi intendiamo studiare ’evoluzione libera dei sistemi
discreti positivi evidenziandone le connessioni con le proprieta spettrali della matrice F
che conseguono dall’ipotesi di non negativita.

Probabilmente il risultato pit importante sulle matrici positive e il teorema di Perron
Frobenius. L’interesse di questo risultato riguarda sia la teoria astratta delle matrici
positive - e piu in generale degli operatori positivi - sia le sue applicazioni allo studio
dei sistemi positivi, delle catene di Markov, etc. Esso puo essere formulato a diversi
livelli di generalita: la formulazione originale di Perron, limitata alle matrici strettamente
positive e alle matrici primitive, e che costituira il nucleo di questo paragrafo, & stata estesa
da Frobenius alle matrici irriducibili, delle quali ci occuperemo nel paragrafo seguente.
Particolarmente interessante ¢ la struttura dello “spettro periferico”, ovvero dell’insieme
degli autovalori a massimo modulo, le cui proprieta si estendono, in parte, dal caso delle
matrici irriducibili a quello delle matrici non negative generiche.

11.4.1 Spettro delle matrici strettamente positive
Premettiamo all’enunciazione del teorema di Perron alcune osservazioni che ci saranno
utili nella dimostrazione e di cui ci avvarremo anche nei paragrafi successivi.

Osservazione 1. Se v € C" denota un vettore complesso e [v| € R} ¢ il vettore costituito
dai moduli delle componenti di v,

V1 |Ul|
v=| 1|, |v|= : , (11.29)

Un |vn |
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i trasformati dei due vettori secondo una matrice F' € Rim verificano la diseguaglianza

fir oo fin] [loal > fijlvil 1> fijv5]
Fivij=|... ... .|| :]= : > : —|Fv|  (11.30)

fal oo fan ‘Un‘ an]’%’ ’Z]énj‘vj

Osservazione 2. Data una matrice (non necessariamente non negativa) F € R™ "
conviene talvolta considerare, accanto agli autovettori “destri”, cioe ai vettori colonna
non nulli v soddisfacenti la condizione Fv = Av, gli autovettori “sinistri”, vettori riga
non nulli w?' soddisfacenti la condizione w'F = Aw”. La teoria della base di Jordan
si applica ancora, con gli ovvi aggiustamenti, e porta alla scomposizione dello spazio in
autospazi generalizzati sinistri.

e ESERCIZIO 11.4.1 Si dimostri che la base “sinistra” di Jordan ha, per ciascun autovalore A di F', lo
stesso numero di catene di autovettori generalizzati sinistri, della medesima lunghezza delle catene
di autovettori generalizzati destri.

f Suggerimento. Basta ricordare che la struttura “destra” di Jordan relativa all’autovalore A dipende
dalla dimensione dei nuclei destri di (F—AI)”, v =1,2,.... Lo stesso vale per la struttura “sinistra”.
Si dimostri quindi che il nucleo destro e il nucleo sinistro di una matrice quadrata M hanno la
medesima dimensione.

Se wi & un autovettore sinistro relativo all’autovalore p e vi & un autovettore destro

relativo all’autovalore \, da wi F = pw? e F'vi = \v; si ricava
wi Fv) = pwivi = AW} vy; (11.31)

quindi, se u # A, deve essere

wivy =0. (11.32)
Anche nel caso in cui wz e vg siano autovettori generalizzati, sinistro, di ordine s e relativo
all’autovalore p il primo, destro, di ordine d e relativo all’autovalore A # p il secondo, se
A # p si ha wl'vy = 0. Per provarlo, assumiamo induttivamente che la conclusione valga
per tutte le coppie di autovettori generalizzati sinistri e destri la cui somma degli ordini
non ecceda k. Se w! e v4 sono autovettori generalizzati soddisfacenti s +d = k + 1, da

WSTF = MWST + wsT_l con WOT =0
Fvg = Avg+vg1 convg=0 (11.33)
e dall’ipotesi induttiva segue
wWlFvy = pwlvg+wl vg=pwlvy
= )\WSTVd + WSTVd,l = Awgvd (11.34)
Quindi vale!'?
wlvy=0. (11.36)

911 prodotto interno fra vettori (colonna) di C™ si definisce ponendo
(z,y) :=2"y. (11.35)

Esso ha le seguenti proprieta (z,z) =0z =0, (z,y)=(y,2)Y, (Oz,y)=Az,y) e (z,\y) = \z,y).
La condizione (11.36) w vy = 0 equivale allora a (W, v4) = 0, in cui W¢ & un autovettore generalizzato
sinistro relativo a fi. Quindi, nel prodotto interno definito da (11.35), se A e u sono autovalori distinti di
F', ogni autovettore generalizzato destro di F' relativo a A & ortogonale a ogni autovettore generalizzato
sinistro relativo a i # A.
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Proposizione 11.4.1 [MATRICI STRETTAMENTE POSITIVE: TEOREMA DI PERRON| Se
F € RY*" ¢ una matrice strettamente positiva, allora

i) [AUTOVETTORE E AUTOVALORE STRETTAMENTE POSITIVI| esistono un numero reale
Ao > 0 e un vettore vg >> 0 tali che

FVO == )\OVO; (1137)

ii) [MASSIMALITA DI )\g] per ogni altro autovalore A € A(F) si ha |\| < A\o;

iii) [SPETTRO PERIFERICO| \g é radice semplice del polinomio caratteristico di F', ossia
é un autovalore con molteplicita algebrica 1;

iv) [UNICITA DELL’AUTOVETTORE POSITIVO E BASE DI JORDAN] vq &, a meno di un
fattore di proporzionalita positivo, I'unico autovettore positivo della matrice F'.
Rispetto alla base di Jordan, ogni vettore x > 0 ha componente positiva su vq;

v) [MONOTONICITA DELL’AUTOVALORE DOMINANTE] Se F' & maggiore di F, ovvero F —
F > 0, il corrispondente autovalore positivo massimale Ay soddisfa la diseguaglianza
5\0 > Ap.

Prova i) Sia & C R’ l'insieme dei vettori non negativi e a somma delle componenti
unitaria (vettori di probabilita)

I

S = {x: | Zn:x,:L 2 >0, Vi}. (11.38)

T i=1
Indichiamo con (Fx); la i-esima componente di F'x e definiamo la mappa

Fx
Z?:l(FX)i

Essa ¢ definita correttamente: poiché x ha almeno una componente positiva e F' ¢ matrice
strettamente positiva, il vettore Fx & strettamente positivo, il denominatore y ;" | (Fx);
& un numero positivo e si verifica immediatamente che Fx/ 3 " | (Fx); & un vettore di S.
Poiché I'insieme S € chiuso, limitato e convesso e ¢ € continua, si puo applicare il teorema
del punto fisso di Brouwer-Tychonov (vedi Cap.3, Proposizione 3.1.2) e concludere che
esiste un vettore vg € S per cui risulta

p:S—>S:x— (11.39)

FV()
Vo= 6(Vo) = =0 11.40
0= O = S v, 10
Ponendo .
Ao = E (FVO)Z'>O, (11.41)

=1

si ha subito la (11.37), mentre risulta vy >> 0 perché F'vy & strettamente positivo.
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ii) Applicando il ragionamento precedente alla matrice F'7, si dimostra l'esistenza di
un autovettore wgy >> 0, corrispondente a un autovalore g > 0

FTWO = HoW(. (1142)
Da (11.37) e (11.42) segue
/L()WOTVO = WOTFVO = )\OWOTVO (11.43)

e, risultando wgvo > 0, si ha pg = .
Sia ora A # Ag un altro autovalore di F', eventualmente complesso, e sia u il corrispon-
dente autovettore, anch’esso eventualmente complesso. Tenuto conto di (11.30), si ha la
diseguaglianza

F|u| > |Fu| = |Au| = |A||ul. (11.44)

Premoltiplicando (11.44) per w{ si ottiene
Aowd [u| = wl Flu| > [\ wi |u] (11.45)

e, tenuto conto che wg |u| & positivo, si conclude che ogni autovalore A di F' soddisfa la
diseguaglianza
IA] < Ao (11.46)

Consideriamo infine la matrice ' — el, il cui spettro si ottiene sottraendo e a tutti gli
autovalori di F'. Se € € positivo ma sufficientemente piccolo, la matrice F' — el rimane
strettamente positiva e ad essa si applicano i risultati finora ottenuti. In particolare, il
numero A9 — € rappresenta il massimo autovalore positivo di F' — e/, mentre A — € ¢ un
altro autovalore di F' — eI, il cui modulo quindi non puo eccedere \y — €.

Se in (11.46) fosse |A| = Ao, avremmo

A—€ < XA—e=|\—¢€ (11.47)

e rappresentando i numeri complessi in
gioco come vettori del piano di Gauss,
(11.47) comporta che, nel triangolo i cui
lati sono i vettori A, €, A —¢, il lato A abbia
lunghezza non inferiore alla somma delle A—e A
lunghezze degli altri due. Cio e possibile
solo se il triangolo € degenere: i vettori A
e A — e devono essere paralleli ed equiversi
al vettore €, che rappresenta un numero
reale positivo. Ma allora A sarebbe reale
positivo e coinciderebbe con Ag.

figura 11.1.2

iii) Proviamo dapprima che A\¢ ha molteplicita geometrica 1, ovvero che l'autospazio Uy,
ha dimensione 1. Se, oltre a vo >> 0, in U), ci fosse un altro autovettore uy linearmente
indipendente da vq, esso sarebbe reale perché tale ¢ Ao, e potremmo scegliere a € R
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in modo che la combinazione lineare vy + aug sia un autovettore non negativo, ma non
strettamente positivo. Atteso che F' ¢ strettamente positiva, da

F(vo+ aug) = \g(vo + aug) (11.48)

segue una contraddizione, perché il membro di sinistra & strettamente positivo, mentre
non lo & quello di destra.
Supponiamo ora che la molteplicita algebrica di Ag sia maggiore di 1. Allora esiste una
catena di Jordan relativa a \g di lunghezza almeno 2, e quindi un autovettore generalizzato
V((]2) di ordine 2 per cui risulta
vo = (F = AI)v? (11.49)

Premoltiplicando (11.49) per 'autovettore sinistro wg >> 07 relativo a \g, si perviene
all’assurdo

0 < wivg=wi(F— )\QI)V(()Q) =0. (11.50)
Quindi )¢ e radice semplice del polinomio caratteristico di F'.

iv) Sia u > 0 un autovettore di F' relativo a un arbitrario autovalore A. Premoltipli-

cando F'u = Au >> 0 per wg >> 0 e tenendo conto che Wg u e positivo, da

Awiu=wl Fu= ) \wiu (11.51)
si ricava A = \g e quindi, per il punto (iii), u = avy, a € R, ovvero autovettore positivo
¢ (proporzionale a) vy.

Se rappresentiamo un generico vettore positivo x > 0 come combinazione lineare dei
vettori v; di una base di Jordan che include vy

n—1

X = Vo + Z iV, (11.52)
i=1

premoltiplichiamo primo e secondo membro per Wg e teniamo conto della (11.36), ottenia-
mo
0 < Wix = agwa vo (11.53)

che dimostra che ogni vettore positivo ha, nella base di Jordan, componente positiva
secondo vy.

v) Poiche F ¢ anch’essa strettamente positiva, per il punto (i) esistono A\g > 0 e
vo >> 0, autovalore e autovettore destro di F', per cui vale la

5\0\70 = FVO = Fvg+ (F—F)Vo.
Premoltiplicando per WOT, I’autovettore sinistro strettamente positivo di F', si ottiene allora
j\owg\_fo = /\owg\_’o + Wg(p — F)\_fo

nella quale sono positivi entrambi gli scalari wi¥¢ e wi (F — F)vy. Quindi deve essere
5\0 > Ao. |

L’autovalore positivo \g, di valore eguale al raggio spettrale di F', e 'autovettore cor-
rispondente vy >> 0 si chiamano di solito autovalore e autovettore “di Perron” (o “di
Perron -Frobenius”).



468 CAPITOLO 11. SISTEMI DISCRETI POSITIVI

e ESERCIZIO 11.4.2 La matrice strettamente positiva
2 1
1 2
. 1 .
ha 3 come autovalore di Perron e { 1] come corrispondente autovettore destro. Il secondo autovalore

N . . .. 1
¢ 1, cui corrisponde ’autovettore destro non positivo [_1] .

e Esgrcizio 11.4.3 Con riferimento alla (11.39), se ¢; := Z[F]ij, ji=1,2,...,n ¢ la somma degli
i=1
elementi della colonna j-esima della matrice F', si verifichi che, per ogni vettore di probabilita x € S,
il denominatore ", (Fx); & non inferiore a minj—1,... » ¢;. Il risultato vale anche se F' ¢ una matrice
non negativa arbitraria?

.....

11.4.2 Spettro delle matrici primitive

L’enunciato del teorema di Perron si estende senza alcuna modifica alle matrici pri-
mitive. La prova dipende dal fatto che la potenza di una matrice primitiva corrispondente
all’esponente di primitivita &€ una matrice strettamente positiva.

Proposizione 11.4.2 [MATRICI PRIMITIVE: TEOREMA DI PERRON] I punti i), ii), iii) iv)
e v) della proposizione 11.4.1 valgono anche quando F' é una matrice primitiva.

PROVA i) Supponiamo che l'esponente di primitivita di F' sia p > 1. Indichiamo con
Ap > 0 Pautovalore di Perron della matrice strettamente positiva FP, con v >> 0 il
corrispondente autovettore destro e con Ag la radice aritmetica p-esima di \g. Allora

0= (FP — \oT)¥o = (F — AD)(FP™' + A FP 2+ ...+ X% (11.54)

garantisce che il vettore strettamente positivo v := (FP~1 + \gFP™2 + ... + )\8_11)\70 e
autovettore di F' relativo all’autovalore positivo \g. Da

FPyy = FP(FP7 4 XFP2 4. 4+ X071 )v,

= (FPL g N FP 24 4 N FPY

= (FP 4 N FP 24+ X DAY
N(FPL o XN FP72 4 4 X v = My

segue che vy € anch’esso, al pari di vy, un autovettore positivo della matrice F?P >>
0. Quindi vy e vq differiscono per un fattore moltiplicativo positivo e vy & a sua volta
autovettore di F relativo a \g. E poi immediato che F' ha anche un autovettore sinistro
wg > 07T, corrispondente all’autovalore \g.

Per i punti ii) e iii) osserviamo anzitutto che lo spettro di F? si ottiene da quello di F'
elevandone gli autovalori alla potenza p-esima. Se A\ € A(F)

- A non puo avere modulo maggiore di A\g. Altrimenti F'? avrebbe un autovalore AP il cui
modulo eccede 5\0;

- se |A] = Ag, allora A = \g. Altrimenti F? avrebbe piu autovalori di modulo o, oppure
I’autovalore di Perron g avrebbe molteplicita algebrica maggiore di uno;

- se A = Ag, esso ha molteplicita algebrica uno. Altrimenti avrebbe molteplicita maggiore
di uno Pautovalore di Perron Ao della matrice FP.
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Per il punto iv), se u > 0 ¢ autovettore di F' relativo all’autovalore A, allora ¢ anche
autovettore di FP relativo all’autovalore A’ = ). Essendo v autovettore destro di Perron
relativo a FP, risulta u = avy, a € Ry.

D’altra parte, se si rappresenta un vettore x > 0 nella base di Jordan di F, x = agvg +
St a;v;, vale ancora la (11.53) perché 'autovettore sinistro wi di F relativo a g &
strettamente positivo. Quindi x ha una componente positiva rispetto a vy nella base di
Jordan di F.

Per il punto v) si procede come per le matrici strettamente positive: se A = F — F
€ positiva, indichiamo con W(:]F > 07 e vy > 0 rispettivamente I’autovettore di Perron
sinistro per F e quello di Perron destro per F' (anch’essa, ovviamente, primitiva). Da

S\QW,(Z;\_/O = Wg (F\_I[)) = (Wg(F + A))\_fo = )\Owg\_’o + W%AVo,
attesa la stretta positivita di wi e di ¥ segue
W%A’Vo

T_
Wq Vo

XO —Xo = > 0. |
In un sistema lineare positivo descritto da una matrice F' primitiva, e in particolare

da una strettamente positiva, la dinamica libera a partire da qualsiasi condizione iniziale

positiva x(0) ha 'autovettore di Perron v come autovettore dominante. Infatti lo stato

iniziale ha una componente « positiva secondo v ed esiste un unico autovalore dominante

Ao, con molteplicita algebrica unitaria.

Pertanto il movimento libero puo essere approssimato asintoticamente dalla successione

avy, QaAgVvo, a)\%vo, a/\gvo,

Esempio 11.4.1 [MODELLO A CLASSI DI ETA] Riprendiamo il modello di Leslie considerato nel
primo capitolo. In assenza di fenomeni migratori la popolazione evolve secondo l’equazione:

a1 (6] Ap—1 [0 7%
B 0 ... 0 0

xt+)=|0 B . 0 | x(t). (11.55)
0 0 ... Ba1 O

Sotto opportune condizioni sui tassi di fertilita a; e di sopravvivenza (3; la matrice F' ¢ primitiva,
quindi ammette un autovettore di Perron v strettamente positivo, con il quale il vettore di popola-
zione x(t) tende ad allinearsi al divergere di ¢, qualunque sia la distribuzione iniziale di popolazione.

Consideriamo alcuni semplici casi:

(i) tassi di sopravvivenza e di fertilita tutti positivi. E evidente che le matrici F? F3, ... hanno
strettamente positive rispettivamente le prime due righe, le prime tre righe, etc. Quindi F" &
strettamente positiva e F' & primitiva.

(ii) un tasso di sopravvivenza (; nullo, oppure il tasso di fertilitd o, nullo. La (i + 1)-esima riga o
I'ultima colonna sono nulle in F' e in tutte le sue potenze. Quindi F' non & irriducibile e non puo
essere primitiva.

(iii) tassi di sopravvivenza tutti positivi, a, unico tasso di fertilitd positivo. La matrice F' & ir-
riducibile: ipotizzando unitari tutti i termini non nulli, si ottiene infatti

_ 0 I 2 0 I 3 0 I3 n—1 _ 0 I n __
F_|:In71 O],F_LTH2 O},F—[I%S 0},...,F _|:Il 0 ],F =1,
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. . —1 N e . . .. . P .
e quindi Y . F* & strettamente positiva. La stessa conclusione vale se ai termini unitari si sosti-

tuiscono arbitrari elementi positivi. Chiaramente la matrice F' non & primitiva.

(iv) tassi di sopravvivenza tutti positivi, a,, e altri tassi di fertilitd positivi. Per il punto precedente
F ¢ irriducibile. E naturale domandarsi quali altri tassi di fertilita devono essere positivi affinché F'
sia primitiva. Riprenderemo ’argomento piu avanti.

Quando F' & primitiva (ma anche quando F' ¢ irriducibile, come conseguenza della successiva propo-
sizione 11.5.1) la struttura dell’autovettore di Perron vo = [&1 & --- &JT si ricava molto
facilmente imponendo la condizione

(&5} Q2 co. Qnp—1 Qn

G 0 ... 0 0 2 2
0 B . 0] 18| =x]8
0 0 ... fua 0] L& én

Eguagliando le componenti del membro di sinistra e di quello di destra e ponendo &£ = 1, si ottiene

1
B1/ Ao
Vo = B1B2/ NG

B1f2 .. ~ﬁ.n71/)\g_1

L’autovalore dominante Ao puo essere interpretato come il “tasso naturale di crescita” della popo-
lazione. Infatti essa cresce esattamente secondo tale tasso quando il vettore iniziale di popolazione
¢ (proporzionale al)l’autovettore dominante vg; per popolazioni con distribuzione iniziale diversa
fra le classi, il vettore di popolazione tende asintoticamente ad allinearsi con il vettore vy e quindi
a raggiungerne la distribuzione. Quando essa € raggiunta, in ogni intervallo di tempo le classi d’eta
vengono moltiplicate tutte per il medesimo fattore Ao, cosicché la popolazione cresce - o diminuisce
- nel suo complesso, ma le proporzioni fra le classi di eta rimangono inalterate.

11.5 Proprieta spettrali: la teoria di Frobenius

Nel caso di matrici irriducibili, il teorema di Perron viene sostituito da un enunciato piu
articolato, dovuto a Frobenius: lo spettro “periferico”, ovvero l'insieme degli autovalori
aventi modulo eguale al raggio spettrale, puo non contenere un solo elemento, ma ha
una configurazione assai particolare, come assai particolare e la struttura degli autovettori
corrispondenti agli autovalori periferici, secondo quanto sara precisato nel corollario 11.5.3.

11.5.1 Spettro delle matrici irriducibili

Proposizione 11.5.1 [MATRICI IRRIDUCIBILI: TEOREMA DI FROBENIUS-PERRON| Se
F € RY*" ¢ una matrice irriducibile, allora

i) [AUTOVETTORE E AUTOVALORE STRETTAMENTE POSITIVI| esistono un numero reale
Ao > 0 e un vettore vg >> 0 tali che

FVO = )\()V(); (11.56)

ii) [MASSIMALITA DI X\g] per ogni altro autovalore A € A(F) si ha || < Ao;
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iii) [SPETTRO PERIFERICO E STRUTTURA GENERALE DELLO SPETTRO| ogni autovalore
A con |A| = \g é radice semplice del polinomio caratteristico; inoltre esiste un intero
positivo n, detto “indice di imprimitivita di F'”, per cui
- gli autovalori a modulo \g sono tutti e soli i numeri complessi dati da

2k

)\Oejnv k:()?l?"'an_la (1157)

- I'intero spettro di F' é invariante (molteplicita incluse) rispetto alla moltiplicazione

27

iv) [UNICITA DELL’AUTOVETTORE POSITIVO E BASE DI JORDAN] vq &, a meno di un
fattore di proporzionalita positivo, I'unico autovettore positivo della matrice F.
Rispetto alla base di Jordan, ogni vettore x > 0 ha componente positiva su vq;

v) [MONOTONICITA DELL’AUTOVALORE DOMINANTE] Se F' & maggiore di F, ovvero

F — F >0, il corrispondente autovalore positivo Ay soddisfa la diseguaglianza \g >
Ao-

PROVA i) Per la proposizione 11.2.2, la matrice

e strettamente positiva, quindi esistono un autovettore vg >> 0 e un autovalore pg > 0
soddisfacenti
F{IO = ,uo{/(]. (1158)

Essendo F' Vo = Vo + Fvo + ... + F" 13 > Vg, Pautovalore jg ¢ maggiore di 1 ed esiste
un unico numero positivo Ag per cui risulta

po =1+ X+ ...+ 2071

Se riscriviamo la (11.58) nella forma

n—1 n—1
0 = > F'—) Mo
h=0 h=0
= (F—=XoD)Vo+ (F2 = ND)Vo+...(F* 1 = X7
= (F=XoI) [T+ (F+Xol) + ...+ (F" 24X F" 3+, 42| ¥y (11.59)
vediamo che vo := [I + (F + Xol) + ...+ (F*" 2+ N F" 2 + ...+ \J7?1)] ¥ > 0 ¢ un
autovettore strettamente positivo di F', corrispondente all’autovalore positivo Ag.

ii) Poiché FT ¢ irriducibile, esistono un vettore wo >> 0 e un numero reale vq > 0
soddisfacenti FTwq = vwy, e procedendo come per il punto (ii) del teorema di Perron, si
verifica I'uguaglianza vy = Ag. Quindi WOT e autovettore sinistro di F' relativo a Ag, e da
Fu=)\u, 0# ueC" segue
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Flu| > |Fu| = [Au| = [Allu] e Xowg |u| = wg Flu| > [Xwg |ul.
Cio implica A\g > |A[.

iv) La prima parte & immediata: se u > 0 fosse un autovettore positivo di F' non
proporzionale a vg, sia u che vy sarebbero autovettori della matrice strettamente positiva
F= Zz;é F" contraddicendo il quarto punto del teorema di Perron.

iii) Se Ao avesse molteplicita algebrica maggiore di 1 come autovalore di F, si vede
immediatamente (p.es. dalla forma di Jordan di F) che 14 Xg + ...+ AJ"' = pg sarebbe
autovalore con molteplicitdh maggiore di 1 per la matrice F = Zz;é F" ancora una volta
in contraddizione con il teorema di Perron.

Sia ora A un autovalore “periferico” di F', soddisfacente cio¢ la condizione \ = e/? ), e sia
u € C" un autovettore corrispondente. Da F'u = Au segue che in

Flu| > |Fu| = [e/*Agu| = Xolul (11.60)
non puo valere il segno di diseguaglianza. Altrimenti otterremmo ’assurdo
wi doju| = wi Flu| > X\ow{ |u]

Quindi |u] & un autovettore positivo di F' corrispondente all’autovalore Ao e per la prima
parte del punto (iv) ¢ proporzionale a vy.

Supponiamo ora che e/®)\q sia P’autovalore periferico a fase positiva minima e sia u()
'autovettore corrispondente. Moltiplicando eventualmente u®) per una costante com-
plessa non nulla, non & restrittivo supporre, che [u)| e vq coincidano

u| = vy (11.61)
e che coincidano altresi la prima componente di u®) e la prima componente di vy.
Esistono allora numeri complessi a modulo unitario e?®* = 1,72, ... e/ per cui risulta
1
€J¢2
ulV = . vo = Dvy (11.62)
cidn
e quindi )
FuV = %) gu®
B FDVQ = €j¢)\0DVO
e 1*D 'FDvy = Mvo = Fvy

F—e*jd_’D*lFD] vo = 0 (11.63)

Nella matrice F'— e~/ D' F D I’elemento generico in posizione (h, k) ha struttura fiz(1 —
e/¥re), quindi la sua parte reale & positiva o nulla, ed & nulla solo nel caso in cui sia
nullo fre(1 — eI¥n).  Poiché v ¢ strettamente positivo e la parte reale della matrice
F — e 7*D7'FD & non negativa, (11.63) comporta che la parte reale della matrice sia
nulla. Allora possiamo concludere che & nulla I'intera matrice, ossia

F=e 7D 1FD. (11.64)
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Il polinomio caratteristico di F coincide con quello della matrice simile D™'FD = ej‘z’F,
quindi B
det(zI — ¢/ F) = det(zI — F), (11.65)

da cui segue che le radici del polinomio caratteristico di F' sono invarianti (molteplicita
inclusa) rispetto alla moltiplicazione per eti?,
Di conseguenza:

o \oe’ ké & autovalore di F per ogni k € Z e, come )\, ¢ radice semplice del polinomio
caratteristico;

e posto ¢ = 2am, il numero a deve essere razionale, altrimenti F avrebbe infiniti
autovalori distinti, e della forma « = 1/7, con n intero positivo opportuno, altrimenti
non sarebbe soddisfatta I'ipotesi che la fase ¢ sia la minima fra le fasi positive degli
autovalori periferici (si veda il successivo Esercizio);

e gli autovalori periferici di F' hanno tutti struttura
)\gejkqg, k=0,1,...,n—1;

se infatti_)\geW appartiene allo spettro periferico di F', ad esso appartengono anche
el EES) per ogni intero k > 0, e se ¥ non fosse multiplo intero di ¢, uno fra gli

autovalori periferici A ) _ ) p
Aoel? Aol (VEO) 7ol (VE29)

avrebbe fase positiva, ma minore di ¢.

iv) Per la prova della seconda parte, relativa alle componenti di un vettore x > 0
rispetto alla base di Jordan vg,vy,...vy,_1,

X =agvg+a1vi + ...+ ap_1Vp_1 (11.66)

basta osservare, come per il teorema di Perron, che il prodotto onvi e nullo per ogni

autovettore generalizzato v; diverso da vy, mentre WOTX e WOTVO sono entrambi positivi.

v) Anche in questo caso, si utilizza 'esistenza di un autovettore sinistro wg e di un
autovettore destro vg strettamente positivi, relativi all’autovalore Ay e si procede come
nel caso delle matrici strettamente positive. |

e KSERCIZIO 11.5.1 Se ¢ = =27, con p e g coprimi e p,q > 1, allora esiste k per cuie ¢ =~ =e ¢

q
i Suggerimento: per la coprimalita di p e q, esistono interi k e h per cui é soddisfatta l’equazione

diofantea kp + hq = 1. Inoltre k si puo sempre supporre positivo. Quindi kP +h=-
q q

Corollario 11.5.2 La matrice irriducibile F' > 0 & primitiva se e solo se il suo indice di
imprimitivita n vale 1.

Prova Se n > 1, F possiede piu di un autovalore a modulo Ay, quindi non puo essere
primitiva.

Viceversa, se 1 = 1, lo spettro periferico di F' comprende solo ’autovalore di Perron Ag,
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che pertanto ¢ dominante. Rappresentando i vettori canonici e;, i = 1,2,...,n sulla base
di Jordan di F, da (11.66) si ottiene

e = oz(()i)vo + agi)vl +...+ agllvn,l, ozéi) >0, :=1,2,...,n,

e quindi

. L Fh L Fhyo ,
Fhe; = /\8 aéZ)V() + agl) /\(};’1 +...+ G Vn-1 @)

e [0
n—1 h ’ 0
)‘0

>0, 1=12,...,n.

(11.67)
I termini Fhvj/)\g, j = 1,2,...,n — 1, sono infinitesimi al divergere di h, poiché gli
autovettori (generalizzati) v; sono relativi ad autovalori con modulo minore di Ag. Quindi
per h abbastanza grande e per i = 1,2,...,n, i vettori oz(()l)vo, strettamente positivi e
. . . : : o @ F'vy @ F'vnoi
indipendenti da h, superano il modulo dei vettori (reali) aj )\h + ...+ O‘n—l?‘

0 0

Si pud allora concludere che tutti i vettori Fe;, i = 1,2, ..., n, sono strettamente positivi
e la matrice F" ¢ strettamente positiva. |

Un’interessante conseguenza di (11.62) ¢ la possibilita di ottenere dall’autovettore vq di
Perron tutti gli autovettori corrispondenti agli autovalori periferici di una matrice ir-
riducibile, sottoponendo le componenti di vg alla moltiplicazione per opportune radici
n-esime dell’unita.

Corollario 11.5.3 [AUTOVETTORI DELLO SPETTRO PERIFERICO| Sia F € R*" una
matrice positiva irriducibile con indice di imprimitivitan > 1 e sia ¢ = 27/n, in modo che
le potenze di
.7 2
0 =el? .=

forniscano tutte le radici n-esime dell’unita. Se Ag > 0 e vy >> 0 sono rispettivamente
Pautovalore positivo massimale e 'autovettore corrispondente,

i) esiste una matrice diagonale
D = diag{1,e%2,..., e/} (11.68)

tale che per ogni h
u® = Dv

¢ autovettore corrispondente all’autovalore periferico 0" \o;

ii) gli elementi diagonali di D appartengono al gruppo delle radici n-esime dell’unita e

ogni radice n-esima dell’'unita coincide con uno almeno degli elementi diagonali di
D.

PROVA Nella dimostrazione del teorema di Frobenius-Perron si e provata 1’esistenza di una
matrice diagonale D, avente la struttura specificata in (11.68), tale che

e ull) := Dvy & autovettore corrispondente all’autovalore periferico O\g

F(DVO) == QAU(DVO). (1169)
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e vale la (11.64), che per comodita riscriviamo nella forma

ODF = FD. (11.70)

Se assumiamo induttivamente che il vettore u®) := D"v soddisfi la Fu™® = " \gu™, e
quindi sia autovettore di F' relativo all’autovalore Gh)\o, allora il vettore u(ht1) .= Dhtly,
soddisfa

Fultt — F[Dh-i-lvo] = [FD] [DhVO] — [HDF] [DhVO]
= [QD] [F(tho)] == [QD] [Fu(h)] — [QD] [Qh/\ou(h)] — 9h+1)\0[Dh+1V0]
= "o, (11.71)

che dimostra il punto (i).

Per il successivo punto (ii), osserviamo che D"vq ¢ un autovettore corrispondente all’auto-
valore Ao, quindi per il teorema di Frobenius-Perron e proporzionale a v, ovvero D"vy =
avg, e cio implica

D" = al, = I, (11.72)

atteso che il primo elemento della diagonale di D vale 1. Quindi tutti gli elementi diagonali
di D sono radici n-esime dell’'unita e le componenti di u®) = Dhvq differiscono da quelle
di vo per fattori che sono radici n-esime dell’unita.

Gli autovettori u® = Dhvy, h =0,1,... ,n — 1, essendo relativi ad autovalori distinti,
sono linearmente indipendenti. Allora sono linearmente indipendenti le matrici diagonali
DY =1,D,D? ...,D"! e cio ¢ possibile solo se la diagonale di D contiene (almeno) 7
elementi distinti, quindi tutte le radici n-esime dell’unita. |

11.5.2 Forma ciclica di Frobenius

Un’ulteriore conseguenza della formula (11.64), dimostrata nel teorema di Frobenius,
riguarda la possibilita di ridurre per cogredienza una matrice irriducibile ad una strut-
tura “ciclica” a blocchi, di cui discuteremo nel seguito alcune notevoli proprieta.

Corollario 11.5.4 [FORMA CICLICA DI FROBENIUS DI UNA MATRICE IRRIDUCIBILE] Se
F' e irriducibile con indice di imprimitivita n > 1, esiste una matrice di permutazione 11
tale che

0 Fp 0 ... 0
0 0 Fy ... 0

Y FII = : (11.73)
0 0 0 ... Fi,
F,p 0O 0 ... 0|

dove i blocchi nulli sulla diagonale principale sono matrici quadrate.

PrOvA Sia D la matrice diagonale (11.68), i cui elementi diagonali sono, per il corollario
11.5.3, tutte e sole le radici n-esime dell’unita. Sia II una matrice di permutazione che
riordina per cogredienza gli elementi diagonali di D in modo che lungo la diagonale si
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succedano prima tutti gli elementi unitari, in numero di v, poi tutti gli elementi 6 := e’ ‘E,in
numero di v, poi tutti gli elementi 62, etc.

I,
1,0
D ="17DII = 1,67 (11.74)
I,,0m!
Partizioniamo in modo conforme la matrice
[Fii Fiz Fig Fiy
For Iy Fas Foy

Fo—tlFm— |3 fsz I Eay (11.75)

_Fnl Fn2 Fn3 an_

e utilizziamo (11.64), (11.74) e (11.75) :

F = 'rn=ut'D'FD)I = ¢~ D )(? FI) 1T DIT) = ' D'FD

_9_1F:111 Flg 9F13 C 977_2‘5?1,7 T
9_2}?1 9_1{_122 F2§ ce 077_3]?27]
_ 9_3F31 9_2F32 0_1F33 .. Gn_4F3n (11 76)
Fnl 9F772 02F773 ... 9’7_1Fm7_

Confrontando (11.75) con (11.76) si ha subito che i tutti i blocchi di F moltiplicati per
potenze di @ diverse da #° sono nulli: quindi F & in forma ciclica di Frobenius. |

e EsErCizio 11.5.2 [POTENZE DELLA FORMA CICLICA] Sia F la forma ciclica di Frobenius (11.73) di
una matrice irriducibile F' con indice di imprimitivita 7 > 1 e autovalore massimale Ag. Allora

(i) 1 blocchi diagonali sono diversi da zero solo in corrispondenza alle potenze F, F27 .. ;

(ii) F" & diagonale a blocchi, con blocchi diagonali (quadrati!)

FioFos---Fy1, Fosbsa---Fia, ..., FpaFia- Fyo1yg;

(iii) tutti i blocchi diagonali del punto (ii) sono matrici irriducibili;
(iv*) tutti i blocchi diagonali del punto (ii) sono matrici primitive.

t Suggerimento. (iii) Se i blocchi diagonali non fossero tutti irriducibili, in qualche posizione (r, s)
essi, e quindi tutte le potenze di F, avrebbero un elemento nullo.

(iv) Siano A € RP*? ¢ B € R™*P. Applicando un procedimento gia impiegato nel paragrafo 6.4, da
zI, —AB 0

o b —A — 4 _
det([ 0 IJ [_B qu}) det{ _B zlq] = z%det(zI, — AB)

I, —-A|l|z, A . zIp 0 b _
det([_B quHO IJ) = det{_BZ 21, — BA = 2" det(zI; — BA).
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seque immediatamente

27det(zI, — AB) = 2P det(zI, — BA).
1l risultato viene poi esteso alle permutazioni cicliche del prodotto A1As--- A, di r matrici, con Ax
di dimensioni p X v1 , Az di dimensioni v1 X va, ..., A, di dimensioni vy—1 X p.
Gli 1 blocchi diagonali irriducibili del punto (i) hanno allora i medesimi autovalori non nulli, quindsi,
in particolare, il medesimo autovalore di Perron-Frobenius, coincidente con \j. Se qualcuno di essi
non fosse primitivo, avrebbe anche qualche altro autovalore periferico, del tipo )\gejé, ¢ € (0,2m),
quindi in F" il numero di autovalori con modulo N} sarebbe maggiore di n e F avrebbe un numero
di autovalori a modulo Ao maggiore dell’indice di imprimitivita.

Con riferimento alla base “permutata”, in cui vale la forma ciclica di Frobenius, un vettore
’ )
viene trasformato da F' come segue:

X1 0 FLQ _0 0 X1 i F:‘172X2 i

X2 0 0 Fa3 0 X9 F5 3x3
Xp—1 0 0 0o . Fn—lm Xn-1 Fn_—l,nxn

Xnp _Fr],l 0 0 R 0 ] X L Fn,lxl

L’applicazione di F' opera sulle componenti del secondo blocco del vettore x trasforman-
dole in componenti del primo, ..., sulle componenti dell’ultimo blocco trasformandole
in componenti del penultimo, su quelle del primo blocco trasformandole in componenti
dell’ultimo.

Inoltre, come conseguenza della primitivita dei blocchi diagonali di F" (cfr Esercizio
11.5.1), la matrice diagonale a blocchi F* per t abbastanza grande ha blocchi diagonali
strettamente positivi, quindi il vettore F"x & costituito soltanto da blocchi strettamente
positivi e da blocchi nulli, a seconda che i blocchi omologhi di x siano o non siano di-
versi da zero. Infine, per k > tn, blocchi strettamente positivi e blocchi nulli si spostano
ciclicamente, sulle n posizioni:

07 [+ [+

+ +

+ : 0

P I 0 T R I e
0 + +

+ + 0
L+ L 0 L+

L’invarianza delle radici del polinomio caratteristico di una matrice irriducibile rispetto
alla moltiplicazione per e¢/?, espressa da (11.65), implica che, in corrispondenza ad ogni
autovalore non nullo A € A(F), i numeri

X ed? A2 eI (19, (11.77)

sono autovalori di F, con la medesima molteplicita di A, Il seguente corollario 11.5.5 ¢
allora conseguenza dell’identita

2T = XNT=(z—= AN (2 — )\equ) e (z— )\ej("_l)a’). (11.78)
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Corollario 11.5.5 [CARATTERIZZAZIONI DELL'INDICE DI IMPRIMITIVITA | Sia F € R*"
una matrice positiva irriducibile, con grafo di influenza G, e sia

det(z] — F) = ¢po2"™ + cn 2™ 4 ...+ epy_, 22 +py_ 2 42" (11.79)
il suo polinomio caratteristico, con
ng<ng <...<ng_o<np_1<ng=n e c,#0,i=01,....k—1k.

Allora coincidono
(i) il numero degli autovalori periferici (i.e. I'indice di imprimitivita n),
(ii) il massimo comune divisore delle differenze di grado n; — n;_1

MCD{m —Ng, Ng—MN1, ... y Np—1 —Nk—2, Nk — nk,l}. (11.80)
(iii) il massimo comun divisore delle lunghezze dei cicli di G,
ProvAa Sia n l'indice di imprimitivita di F.
In corrispondenza a ciascun autovalore A # 0 lo spettro di F' comprende gli elementi
di (11.77), tutti con la medesima molteplicita di A. Per ciascuna n-upla di autovalori
non nulli, con il medesimo modulo e con fase come in (11.77), si possono raggruppare i
corrispondenti fattori del polinomio caratteristico, ottenendo la fattorizzazione

det(zl, — F) = 2" (2" = A) (2" = N)(z"T = A)) ...

Quindi il polinomio caratteristico ¢ il prodotto di 2™ per un polinomio in z" e 'indice di
imprimitivita n € divisore comune delle differenze n; —ng, no—n1,...,Nk_1—Ng_2, N—Ng_1.
E poi evidente che 7 rappresenta il divisore comune massimo di tali differenze, altrimenti
I'insieme degli zeri del polinomio (11.78) sarebbe invariante per rotazioni intorno all’origine
del piano complesso di ampiezza inferiore a ¢ = 27, il che non vale per lo spettro periferico
di F. Quindi 5 coincide con il MCD dato da (11.80).

Ogni ciclo di G ha lunghezza multipla di n. Infatti, riferendoci alla partizione dei vertici che
da luogo alla forma ciclica di Frobenius F, ¢ chiaro che ogni cammino del grafo ha inizio
in un vertice appartenente a uno degli n sottoinsiemi della partizione, e puo rivisitare il
sottoinsieme (e quindi il vertice di inizio) soltanto dopo aver compiuto un numero di passi
multiplo di . Quindi il MCD j3 delle lunghezze dei cicli di G € un multiplo di n. D’altra
parte, si ¢ visto che, come conseguenza dell’Esercizio 11.5.1, se ¢ & abbastanza grande, F"
ha diagonale strettamente positiva, quindi per ogni i risulta [F*]; > 0 e [F¢+D7);, > 0,
e 3 deve dividere sia tn che (t 4+ 1)n. Percio 3 coincide con 7. [ |

Esempio 11.5.1 [ONDE DI POPOLAZIONE NEL MODELLO A CLASSI DI ETA] Nell’ipotesi che i tassi
di sopravvivenza §; siano tutti positivi, la matrice di Leslie (11.55) & irriducibile se e solo se a, > 0.
Sviluppando il determinante di zI—F' secondo I'ultima colonna, si vede che il polinomio caratteristico
soddisfa la relazione

[z —o1 —Q2 ... —Qp—1 —Qn7]
7[31 z 0 0 Z— 0 —Q2 cee —Op—1
0 —0B2  z S 0 -6 z .. e 0

det =81 Bn_10n+zdet 0 —f2  z 0

0 7[3”72 z

L 0 0 7ﬁn71 z



11.5. PROPRIETA SPETTRALI: LA TEORIA DI FROBENIUS 479

e puo quindi essere espresso nella forma

n—3
2 —2 -1

det(21, — —(an | | Bi)—(an—1 H Bi)z—(an—2 | | Bi)z"—.. . —(a2f1)z" " —an2" T 42"

i=1
Se ricordiamo che, per ipotesi, a, e tutti i 3; sono positivi e se indichiamo con

oy, >0, ay, >0, ..., ay,, >0, con M <<..<vg=n
-1
i tassi di natalita positivi, possiamo riscrivere il polinomio caratteristico ponendo &, = au, [[72] Bs
det(zl, — F) = —an— Gy, 2" 70— = @2 a2+ 2"

Per il corollario 11.5.5, 'indice di imprimitivita di F' si puo calcolare a partire dai gradi dei monomi
non nulli di det(zI, — F)

n = MCD{n—(n—wv1), n—v1)—(n—v2), ... , (M—vp_1)— (n—vg)}
= MCDA{vi,va—v1,v3—V2, ..., Uy —Vk—1}
= M.C.D.{l/1, Vo, V3, ..., l/k} (11.81)

e la matrice di Leslie & primitiva se e solo (11.81) & unitario.

Quando l'indice di imprimitivita n di F' &€ maggiore di 1, si innescano “onde di popolazione”, ovvero
distribuzioni di popolazione periodiche (se Ag = 1) o pseudoperiodiche.

Se vo & lautovettore di Perron, poniamo 6 := ¢/2™/" ¢ denotiamo con u” = D"vqy, h = 0,1, ... ,n—1,
gli autovettori corrispondenti agli autovalori periferici 8"X\g. Gli altri autovettori e autovettori
generalizzati u™, h =n,n+1,...,n— 1, della base di Jordan sono relativi ad autovalori a modulo
minore di Ag.

Qualsiasi sia la popolazione iniziale x(0) = xo = >.7_¢ apu™ + PR anu™ | la popolazione x(t)
al divergere del tempo soddisfa

x(t) X~
-~ (h) pht
Y _E apu 70",
0 h=0

Poiche risulta 8" = #"*T¥" per ogni intero v, se t & sufficientemente grande si ha

x(t +n) () ght X( )
)\t-H] = Z apu o
e quindi x(¢t + 1) ~ A\{x(¢).

Sempre per grandi valori di ¢, in ciascun pseudoperiodo di durata 7 i vettori di stato descritti dalla
popolazione sono proporzionali ai vettori

n—1 n—1 n—1 n—1
Zahu(h>, zjozhu(mﬁh7 Zahu<h)92h, cee Zahu(h)G("fwh,
h=0 h=0 h=0 h=0

quindi la distribuzione della popolazione nelle n classi di eta ritorna ciclicamente (ogni 7 istanti)
nella medesima configurazione. D’altra parte il livello della popolazione complessiva (i.e. la somma
degli individui presenti nelle n classi di etd) si accresce in un periodo secondo un fattore pari A{.
Si noti che, sebbene il vettore di popolazione e il livello complessivo di popolazione dopo un periodo
siano pari a A{ volte il vettore e il livello raggiunti all’inizio del periodo, non ¢ vero che in un passo
il vettore o il livello di popolazione si accrescano di un fattore pari a Ao rispetto a quelli del passo
precedente.

11.5.3 Ulteriori proprieta dell’autovalore massimale

Abbiamo visto che 'autovalore A ¢ il raggio spettrale p(F') della matrice F, ossia il raggio
del piu piccolo cerchio con centro nell’origine di C in grado di contenere lo spettro A(F).
Esso puo essere visto anche come l'elemento di separazione fra le due regioni [0, ) e
(Ao, +00) dell’asse R . Verificheremo che in ciascuna delle due regioni
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- la “matrice risolvente” (Al — F)~! ha proprieta di segno diverse;

- il vettore trasformato Fx di un vettore positivo x pud maggiorare (risp. essere
maggiorato da) tutte le componenti di Ax.
Nella discussione utilizzeremo (la versione matriciale di) un risultato di C.Neumann.
Se M = [m; ;| € una matrice in C"*™, indichiamo con |M| la matrice non negativa [|m; ;| i
cui elementi sono i moduli degli elementi di M, e diciamo che una serie di matrici complesse
> icgM; converge assolutamente se la serie di matrici non negative > 2 |M;| converge
componente per componente.

Lemma 11.5.6 [RISOLVENTE E SERIE DI C.NEUMANN] Se F' € C"" e p(F) = max{|)\;| :
Ai € A(F)}, allora per ogni numero complesso A con |A| > p(F') la serie (di Neumann)

%

> XS (11.82)
=0

converge assolutamente e la sua somma & (A, — F)™!, la matrice “risolvente di F”.

PROVA Se M e N appartengono a C"*", vale la diseguaglianza |[M N| < |[M||N|.
Verifichiamo dapprima che, se p(F) < 1, allora la serie I, + |F| + |F?| + ... converge.
Infatti i modi del sistema!! x(t 4+ 1) = Fx(t) sono convergenti, quindi, fissato un numero
positivo € < 1/n, esiste un esponente k per cui tutti gli elementi di F* sono in modulo
minori di € e dalla precedente diseguaglianza segue

IF* < e(1.1]), 1
[F < [FHIFY < @n(11]) = —(en)? (1n1y)

e .. 1
|Fuk| < |FkHF(V71)k| < prt (1n1£) — ﬁ(ﬁn)y (1nlg) '

Ma allora si ha

o0 o0
STIF| < In+ P+ ...+ [FFI) [P
=0 v=0

< (I +|F|+...+ |F’f—1|)[In + % (L+en+ (en)® +...)(1,1)) }

e la convergenza della serie Y oo, |F| consegue della condizione en < 1. E ovvio che, per
ogni coppia di indici (r, s), nella serie Y 2 F' gli elementi in posizione (r,s) convergono
assolutamente, quindi convergono.

Supponiamo ora che il raggio spettrale di F' abbia un generico valore non negativo e che
A sia un numero complesso tale che |A| > p(F)). Il raggio spettrale di F//A ¢ minore di 1,
quindi la serie 2% (F/A)" converge assolutamente. D’altra parte risulta

F X (F\° > (F\" X, F
=Y (5) = 00— 'y (3) - = F)Y

quindi la somma della serie (11.82) fornisce (AI, — F)~!. [ ]

1] fatto che il sistema evolva sul campo complesso non modifica le conclusioni circa la convergenza dei
modi.
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Proposizione 11.5.7 [PROPRIETA ESTREMALI DELL’AUTOVALORE )] Sia F € R}*"
una matrice irriducibile e sia Ay > 0 il suo autovalore di Perron-Frobenius. Allora

i) se A > X\ la matrice (A,, — F)~! & strettamente positiva;
se 0 < \ < Ao la matrice (\I,, — F)~!, ove esista, contiene qualche elemento negativo;

ii) sex >0e A€ Ry, lacondizione F'x > Ax implica Ay > A

la condizione F'x < Ax implica A\g < A.

iii) Ao si puo caratterizzare come

Ao = sup{A € Ry : Fx > Ax, per qualche x > 0} (11.83)
= inf{\ € R, : Fx < \x, per qualche x > 0} (11.84)

PrROVA 1) Se A > A, la serie di C.Neumann converge e si ha

%

-1
(A — F) _Z)\iJrl’
=0

Quindi (Al — F)~! & positiva in quanto limite di somme di matrici positive. Inoltre, per
Iirriducibilita di F' e strettamente positiva la somma parziale Z?:_ol Fix~=1 quindi anche
la somma della serie.

Se 0 < A < Xy e vg >> 0 e lautovettore di Perron-Frobenius corrispondente a Ag, da
Fvo = \gvo >> Avg segue n := (A, — F)vg << 0. Poiché il prodotto (A, — F)'n = vg &
strettamente positivo, la matrice (Al — F)~! deve contenere almeno un elemento negativo
in ogni sua riga.

ii) Se WOT >> 07 & Pautovettore sinistro di Perron-Frobenius, F'x > Ax implica
Mwix = wil Fx > wl Ax (11.85)
e quindi A\g > A. Analogamente si verifica che F'x < Ax implica A\g < A.
iii) Risultando F'vg = Agvg, chiaramente \g € {\ : F’x > Ax per qualche x > 0}. Quindi
Ao < sup{\: Fx > Ax per qualche x > 0}. (11.86)

Se nella diseguaglianza (11.86) valesse il segno “<”, esisterebbero A > X ex >0 per
cui si avrebbe Fx > Ax e quindi'? Fx > Ax, in contraddizione con il punto (ii). Cid
dimostra (11.83). La (11.84) si dimostra in modo analogo, ricorrendo alla condizione
Fx < Ax = Ao < A del punto (ii). [ ]

Corollario 11.5.8 [CARATTERIZZAZIONE MAX-MIN DI \g E vo] Se F' é irriducibile, e se
Ag > 0 e vg >> 0 sono Iautovalore e I'autovettore di Perron-Frobenius di F', allora

max (min (FX)Z)

x>0 i Z;

= Ao = min (max (FX)> (11.87)

x>0 i X;

e il valore Ay viene raggiunto soltanto se x & proporzionale a vg.

12 Y I o e1e . . .
Fx = Ax non ¢ ammissibile, altrimenti Ag non sarebbe ’autovalore di Perron.
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PROVA Sia x un arbitrario vettore strettamente positivo e sia min; (F;:)i = \. Risulta

allora, per i = 1,2,...,n, (Fx); > Xxi, Vi, e quindi F'x > Ax. Di conseguenza

Ae {\: Fx > Xx per qualche x > 0},

e cio implica, attesa la (11.83), A < \o. Daltra parte, scegliendo x = vq si ha (Fx)s Ao

€,

per ogni 7. Quindi I’eguaglianza di sinistra in (11.87) & verificata, scegliendo x = ZVO.

Se un vettore x >> 0 soddisfacesse min; (I;’_() £ = )\ ma il valore minimo non fosse raggiunto
per tutti i valori dell’indice ¢, si avrebbe Fx > Aox, e per il punto (ii) delle proposizione
11.5.7 si otterrebbe l'assurdo Ao > Ag. Quindi nell’eguaglianza di sinistra di (11.87) il
massimo si raggiunge soltanto in corrispondenza all’autovettore vg.

L’eguaglianza di destra si prova in modo analogo. |

e Esempio 11.5.2 [CONTROLLO DI POTENZA IN UNA RETE DI TRASMISSIONE] Si consideri una rete
costituita da n > 2 trasmettitori 741, T»,...,T, con livelli di potenza positivi p1,p2,...pn > 0, che
trasmettono a n ricevitori Ri, Ra, ..., R,. Il generico trasmettitore T; & in comunicazione soltanto
con il ricevitore R;, ma quest’ultimo riceve segnale (indesiderato!) anche dagli altri trasmettitori.
Per ogni 4 e j, indichiamo con g;; > 0 il
guadagno dal trasmettitore Tj al ricevitore
R;.

Allora il livello di potenza S; del segna-
le “utile” ricevuto dal ricevitore R; da
parte del trasmettitore 7T; con cui comu-
nica & g;ip;, mentre il livello di potenza
del segnale di interferenza captato da R;
e dovuto al trasmettitore Ty, k # ¢ € dato
da gixpk-

Complessivamente, il segnale di inter- Tn
ferenza sul ricevitore R; ha un livello di

potenza Z; = >, _, gikpk € il rapporto fra T,
la potenza del segnale utile e quella del se-

gnale di interferenza ¢ dato da Figura 11.5.1

T R:

T

S; GiiDi
—-— = = 11.88
L Zk¢i ik Pk ( )

Per un’assegnata matrice G = [gi;] dei guadagni, il rapporto S;/Z; dipende dal vettore p =
[ PL P2 ... Pn }T ma rimane invariato se il vettore viene moltiplicato per una arbitraria costante
positiva. La situazione piu critica si verifichera in corrispondenza al ricevitore R; per il quale risulta

minimo il rapporto S;/Z;. Tale valor minimo, min; fz, viene denotato con I'acronimo SIR!? e il

problema che intendiamo affrontare & quello di determinare il vettore delle potenze p in modo da
rendere SIR il piu elevato possibile

p>>0 @ i

max (m_in §> . (11.89)

A tale scopo, introduciamo la matrice positiva irriducibile G = [g;;] = (diagG) ™' (G — diagG) con

gﬂ sei#j
9is =4 9"
0 se1 =17

13Signal to Interference Ratio
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e osserviamo che risolvere in p il problema (11.89) equivale a minimizzare, rispetto a p, il valore

massimo dei rapporti inversi %& Il problema si riduce allora al seguente

min (max2> = min (max(ép)i) . (11.90)

p>>0 i i p>0 i Di

Per il corollario 11.5.8, i livelli di potenza ottimali sono quelli proporzionali alle componenti del
vettore di Perron vo di G. In corrispondenzg a tali livelli, il valore massimo dei rapporti inversi ¢
minimo e vale Ag, I'autovalore di Perron di G. Quindi 1/\o fornisce il valore massimo del SIR.

e ESERCIZIO 11.5.3% [DERIVATA DI UN DETERMINANTE] Se M(z) = [m;;(z)] & una matrice n X n i
cui elementi m;;(z) sono funzioni derivabili della variabile reale z, allora

et M(2) ZZ adjM (= dm” Zdet MD(z (11.91)

dz
=1 j=1

dove M@ (2) & la matrice ottenuta da M(z) sostituendo nella riga i-esima gli elementi m.;(z) con
dmi;(2)
dz

le rispettive derivate ,perj=1,2,....n

# Suggerimento: si applichi la regola di derivazione delle funzioni composte: det M dipende dalle n*
variabili mi1, miz, ..., Mnn, ciascuna delle quali é a sua volta funzione di z.
La dipendenza di det M dalla variabile ms; si ricava dalla formula

det M = mil[ade]il + ...+ myy [adJM]Z] + ...+ mm[ade]m,

M
nella quale [adjM];1, . .. [adjM]in non dipendono da m;; e quindi aéleTt = [adjM]i;. Da cio segue
ij
Odet M dm” dm”
df det M E E am” E E adJM ij dz .

i=1 j=1 =1 j=1

e EsgrciziO 11.5.4* [COMPORTAMENTO DI Ap(z) E DI adj(z] — F)] Se F > 0 & una matrice
irriducibile con autovalore massimale positivo Ao, allora
(i) sul semiasse reale positivo la funzione polinomiale Ap(-) : R+ — R : z +— Ap(z) ha derivata
positiva per ogni numero reale z > Ao;
(ii) la matrice adj(zI — F) & strettamente positiva per ogni numero reale z > Ao.

f Soluzione. (i) Si fattorizzi sul campo reale il polinomio caratteristico di F. Se Ao, A1, ..., Ar s0N0
le sue radici reali e pi, fi1, g2, b2, - - - s, fis le radici complesse coniugate

Ar(z) = (2= 20)(z = A1) (2= M) (27 = (ua + i)z + pafin ) o (27 = (s + 1)z + o)

siha i <X, t=1,...,1, e Repj < Ao, j=1,...,5. Quindi, per ogni z > Ao, sia i fattori linears
z—Xii=1,...,7, e le loro derivate (rispetto a z), sia i fattori quadratici z*> — (u; + fi;)z + wifi; e
le loro derivate 2z — (u; + fij) sono positivi.

Percio ’espressione della derivata

dAR(2) _ Ar(2) | \~AF(2) | = Ar(2)(22 — py — 1))
dz  z=Xo +; z—=Ni +ZZQ+(MJ‘ + i)z + pft;

per z > Ao consta di addendi tutti positivi, mentre per z = Ao ha positivo il primo addendo e nulli
gli altri. Ne consegue che per z > Ao la funzione polinomiale Ap(z) ¢ strettamente crescente.

(i) Dall’identita (zI — F)adj(zI — F) = Ap(z)I, si ottiene (Aol — F)adj(Aol — F) = 0, quindi ogni
colonna non nulla di adj(Aol — F) é un autovettore di F relativo all’autovalore \o.

Poiché l'autospazio di Ao ha dimensione 1, il rango della matrice Aol — F é n — 1, quindi esiste
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almeno un minore di ordine n — 1 non nullo e la matrice aggiunta ha un elemento diverso da 0.
Allora almeno una colonna coljadj(Aol — F) & autovettore di \o, e pertanto & strettamente positiva
o strettamente negativa. Lo stesso ragionamento vale per la matrice FT | anch’essa irriducibile con
autovalore massimale Xo. Da adj(hol — FT) = adj(MoI — F)T seque che adj(AoI — F) ha una riga,
p.e. la i-esima, strettamente positiva o strettamente negativa. Quindi le colonne di adj(Aol — F)
sono vettori tutti strettamente positivi o tutti strettamente negativi, proporzionali all’autovettore vo.
Infine, applicando (11.91) a M(z) = zI — F si ha dm;j(z)/dz =1 sei = j e dm;;(z)/dz = 0 se
i #j, da cus
L an(e) = > ladi(o1 = Pl = tradi(z1 — F)

Se z = o, la derivata di Ap(z) é positiva, quindi ¢ positiva la traccia di adj(hol — F), quindi
adj(MoI — F) & strettamente positiva. Se z > o, la matrice (zI — F)™' & strettamente positiva
(proposizione 11.5.6) e Ar(z) > Ar(Xo) = 0 é un numero positivo. Quindi é strettamente positiva
la matrice adj(zI — F) = (2 — F) ' Ap(2).

11.6 Proprieta spettrali di matrici non negative generiche

Per una arbitraria matrice non negativa, alcune delle conclusioni del teorema di Perron
Frobenius valgono in forma pit “debole”.

Proposizione 11.6.1 [MATRICI RIDUCIBILI: TEOREMA DI PERRON-FROBENIUS] Se F' €

nxn
RJr

i)

iii)

iv)

\

€ una matrice non negativa,

[AUTOVALORE MASSIMALE NON NEGATIVO, CON AUTOVETTORE POSITIVO] esistono
un numero reale Ao > 0 e un vettore vg > 0 tali che

FV() = )\QVO; (11.92)

[STRUTTURA GENERALE DELLO SPETTRO| per ogni altro autovalore A € A(F') si ha
Al < Xo;

[SPETTRO PERIFERICO| gli autovalori di massimo modulo hanno tutti una fase che
¢ un multiplo razionale di 2m. Esistono inoltre interi ny,...,mq, g < n, per cui gli
autovalori a modulo \g sono tutti e soli i numeri complessi dati da

2m
X h=1,2...,9, kn=1,2,....m: (11.93)

[QUANDO ESISTE UN AUTOVETTORE STRETTAMENTE POSITIVO IN U),?] autospazio
U, corrispondente all’autovalore massimale \o, comprende un autovettore v stret-
tamente positivo se e solo se, nella forma normale (11.20), Ay é autovalore di tutti i
blocchi isolati F;;, i =1,2,...,h , ma non & autovalore degli altri blocchi diagonali
Fm‘, 7> h,’

[MONOTONICITA DELL’AUTOVALORE MASSIMALE] se F' & maggiore di F, ovvero F —
F > 0, i corrispondenti autovalori massimali non negativi Ao e Ao soddisfano la

diseguaglianza \g > Ao.

ProvA (i) e (ii) Se lo spettro di F' contiene solo l'autovalore nullo, la matrice F' & nilpo-
tente. Scelto un arbitrario vettore x > 0, esiste una potenza minima v in corrispondenza
alla quale vale F¥x = 0. Allora il vettore positivo e non nullo vy := F”~'x soddisfa
F Vo = 0= OVO.
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Se F' non & nilpotente, denotato con Ag > 0 il massimo fra gli autovalori di Perron dei
blocchi diagonali irriducibili nella forma normale, lo spettro di F' contiene Ay e soddisfa
la condizione \g > |A|, VA € A(F). Rimane da verificare che a \g corrisponde almeno un
autovettore positivo. Se u € R" ¢ un autovettore corrispondente a \g, da Fu = \gu segue

Flu| > Ao|ul. (11.94)

e se (11.94) vale come eguaglianza, abbiamo concluso. Se (11.94) vale come diseguaglianza,
consideriamo il sottoinsieme non vuoto di S definito da D := {x € S : Fx > \ox}. Esso &
compatto e convesso, e la mappa

Fx Fx

:D D : = .
PP DX S (), 17Fx

(11.95)

- ¢ ben definita e continua in D, dato che per ogni x € D il denominatore di (11.95),
17 Fx, soddisfa
17 Fx > 1T/\0X = \o;

- ha immagine effettivamente contenuta in D: da F'x > A\gx segue infatti

Fx AoX Fx
>F =\
1TFx = 1TFx °1TF

Fo(x)=F = AoP(x).

Per il teorema di Brouwer-Tychonov ¢ ammette un punto fisso vg € D, ovvero
[ITFVO] vy = S\OVO = F'vg, con 5\0 = ]_TFVO.

Da Fvy > A\gvo (perché vo € D) e da Fvy = A\gvp segue \g > Ag e quindi g = Ao, dal
momento che \g € un autovalore di modulo massimo.

iii) Lo spettro periferico di F & costituito dagli autovalori a modulo A\g. Se X\g > 0
(altrimenti I’enunciato ¢ banale), ¢ immediato che lo spettro periferico di F' ¢ formato
dagli autovalori a modulo massimo dei blocchi diagonali irriducibili a raggio spettrale Ag
nella forma normale (11.20) F' di F. Basta allora applicare il teorema di Frobenius-Perron
per le matrici irriducibili (proposizione 11.5.1).

iv) Riferiamoci alla forma normale F'. Se I’autovalore non negativo massimale \g & nullo, la
matrice F' e nilpotente e la condizione vy >> 0 & incompatibile con la condizione F'vg = 0,
a meno che non sia F' = 0. Se \g > 0, consideriamo ’equazione

_ - (1) - - () A
o FINE
0 F v
2,2 | o Vo 0
0 o e | : :
_ n (h) (h)
e : S NG e
* * * Fh+1,h+1 v(()hH) v(()h+1)
* ok * « :
R * * % % Fk,k' I v[()k) | | v
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e imponiamo che le componenti v(()j),j = 1,2,...,k, della partizione di vy siano tutte
strettamente positive. Allora )¢ risulta essere autovalore dei blocchi isolati Fj;, ¢ =
1,2,...,h. Verifichiamo che Ay & maggiore dell’autovalore massimale )\éhH) del blocco
Fh i1 py1. Utilizziamo la (h + 1)-esima riga di (11.96):
h
AOV((Jh+1) = ZFh—f—l,jV(()j) + Fh+1,h+1v(()h+l). (11.97)
j=1

Se Fh_l’_l’h_'_l e nulla, si ha Ay > )\(()hH) = 0. Se ¢ irriducibile, premoltiplichiamo entrambi

(h+1)>T

i membri di (11.97) per I'autovettore sinistro (w >> 07 relativo all’autovalore
()

/\éhﬂ) di Fh+1,h+1‘ Poiché Fh+1,j ¢ positiva per qualche j < h e le componenti v’ sono
strettamente positive, si ottiene

h
/\O(w((Jthl))Tv(()thl) _ (W(()thl))T ZF’}L-{-l,jv(()j)+)‘éh+1)(w(()h+1))TV(()h+l) > /\(()h+1)(w(()h+l))TV(()h+1).
j=1

Atteso che (w(()hH) )Tv(()hH) € un numero positivo, si conclude che Ay > )\(()h+1). Un analogo

ragionamento vale per gli autovalori massimali dei successivi blocchi diagonali non isolati.
Viceversa, nell’ipotesi che Ay > 0 sia autovalore massimale di tutti i blocchi diagonali
isolati e che gli altri blocchi diagonali abbiano autovalori massimali )\(()i) < Ag, proviamo
che I'equazione (11.96) ammette soluzione vy strettamente positiva. Allo scopo, scegliamo
come componenti V((]i), i < h, gli autovettori strettamente positivi dei blocchi diagonali

isolati forniti dal teorema di Frobenius. L’equazione

h

—_ h —_ .

(Aol — Fh+1,h+1)v(() - E Fh+1,jv(()])
i=1

nell’incognita v(()hH) ammette una soluzione strettamente positiva. Infatti, essendo )\(()]H—l) <

Ao, per la proposizione 11.5.7 (Aol — Fh+17h+1)_1 ¢ una matrice strettamente positiva e

h
, ) B ) .
v ™ = (Aol = Fyarpn) ! ) Fyyvs) >0
=1

()

fornisce una soluzione strettamente positiva perché il vettore Z?:1 FthLjVO] e positivo.
. . . . (h+2 k
Induttivamente, possiamo costruire allo stesso modo le componenti v(() + ), . ,v(() ),

v) Per ogni € > 0 le matrici F, := F + €117 e F, := F + €117 sono strettamente positive

e soddisfano la diseguaglianza F, > F.. Indicati con 5\86) e con )\((f) i rispettivi autovalori

massimali, dal punto (v) del teorema di Perron abbiamo, per ogni valore positivo di e,
;\(()6) > /\(()6). Passando al limite per € — 0 e tenuto conto che gli autovalori sono funzione

continua degli elementi delle matrici, otteniamo Ag = lim_ 5\(()6) > lime_q )\ée) =X. N

e Esercizio 11.6.1 (i) Sia F' la matrice positiva in forma normale (11.20), con autovalore positivo
massimo Ao > 0, e siano F;; e F} ; il primo e I'ultimo blocco diagonale (eventualmente coincidenti)
relativi all’autovalore \g.

i) Se v € un autovettore destro positivo di Ao, i blocchi v“), ¢ < i sono tutti nulli.
0

(v) (v)
0

(ii) Se il primo dei blocchi non nulli di vo & v, allora vy’ >> 0 & un autovettore destro del blocco
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irriducibile F',,,,M relativo all’autovalore positivo massimo Ag.
(iii) Se t < j e se Vo > 0 & un autovettore della sottomatrice

,Ft’t —
- Fivit Firie+1
F =

Fit Friv1 ... Frg

’

. . 0 N -
relativo all’autovalore Ao, allora il vettore [‘7 } € R} & autovettore di F.
0

Corollario 11.6.2 [SOTTOMATRICI PRINCIPALI DI UNA MATRICE NON NEGATIVA| Se
F e RY™ e Xg > 0 ¢ il suo autovalore massimale, ogni sottomatrice Fe R*™ ottenuta
da F cancellando n — m > 0 righe e colonne di egual indice ha autovalore massimale
5\0 < X\g. Se F ¢ irriducibile, la diseguaglianza vale in senso stretto: 5\0 < Ap.

~ F F
ProvA Non e restrittivo ipotizzare che F' sia il blocco Fip della matrice F' = [ FH Flz] .
21 22

Per ogni « € [0, 1], si ha

i1 Fio Fi1 afFis i1 0
== > = > =
F |:F21 F22:| > Fa |:C¥F21 OCFQQ:| > ko [ 0 0:|

Se denotiamo con /\(()a) l'autovalore massimale di F},, si ha 5\0 = )\80). Scegliamo allora

a € (0,1). Per il punto (v) delle proposizioni 11.5.1 e 11.6.1 si ha
Ao = A > A > 0 2 X,
e la prima diseguaglianza ¢ stretta, )\81) > )\(()a), se F' e irriducibile. |

e ESERCIZIO 11.6.2 [PROPRIETA DI Al — F] Se ) ¢ autovalore non negativo massimo della matrice
non negativa F' = [f;;] e se A > Ao, allora
(i) F/X & matrice asintoticamente stabile;
(ii) per ogni 7 risulta fi; < Ao;
(iii) gli elementi diagonali di A\I — F' sono positivi e non positivi gli altri'®;
(iv) il vettore v.=[v1 w2 ... wn]" = (A — F) "1 & un vettore strettamente positivo;
(v) posto D = diag{v1,v2,...vn}, la matrice R := (Al — F')D & diagonalmente dominante per righe
(ossia [rii| >3, |rijl)-

§ Suggerimenti: (ii) dal corollario 11.6.2; (iv) (A\I — F)7'1 = X" [I + 300 AT F 1 > A1
(v) da D1 = (\I — F)™'1 seque (\[ — F)D1 = 1; quindi le righe di (\I — F)D hanno somma
unitaria e |(X — fi)vi| = (A= fa)vi > 32, fijvi = 20,2 1 fivil

e ESERCIZIO 11.6.3 Se F' ¢ una generica matrice positiva di dimensioni n X n
(i) & vero che gli autovalori a modulo massimo hanno fase multipla di 2% ? e fase multipla di %?
(ii) se Ao € il suo raggio spettrale, 'autospazio Uy, ha una base di autovettori positivi?
(iii) se la forma normale di F' contiene 3 blocchi diagonali irriducibili relativi all’autovalore massimale
Ao, quale fra le seguenti conclusioni possiamo trarre circa la forma di Jordan di F'?
- contiene tre miniblocchi relativi all’autovalore Ag?
- contiene un miniblocco di ordine 3 relativo all’autovalore \g?

- puo contenere, a seconda dei casi, da uno a tre miniblocchi relativi all’autovalore Ag?

14 . . .. . Ce 1. .
una matrice A soddisfacente la condizione a;; < 0,Vi # j si dice una Z-matrice .
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Otn—1)x(n-1) O
# Suggerimento. (ii) La matrice nilpotente F = ha rango 1. Poiché dimker F' =
17 0
dim Uy, = n — 1, essa ammette altri autovettori, oltre all’autovettore positivo e,. Quali?

[’autovalore massimale Ay di una matrice non negativa puo essere stimato, e in taluni casi
determinato con esattezza, a partire dalle somme degli elementi di riga o di colonna.

Proposizione 11.6.3 [SOMME DI RIGA O DI COLONNA E AUTOVALORE MASSIMALE| Se
F = [fi;] € RY*™ ¢ una matrice non negativa e se

n n
i=1 Jj=1

sono le somme degli elementi che costituiscono rispettivamente la colonna j-esima e la riga
i-esima di F', allora 'autovalore massimale non negativo \g soddista le diseguaglianze

mjin c; <A < mjax s miin i < Ag < maxr; (11.98)

ProvA Non e restrittivo supporre che 'autovettore

&1
&2

Vo = >0

&n
corrispondente all’autovalore Ay abbia somma delle componenti unitaria. Allora da

fiiér + fi2lo + ...+ finén = Mo&
f2161 + f2260 + ..+ fonln = Moo

fnlgl + fn2§2 +...+ fnnfn - )‘Oé-n (1199)
sommando per colonne si ottiene
ST faEi+ Y fobat Y finbn = cibiteba .t enbn =X Y& = Ao (11.100)
i=1 i=1 i=1 7=l
Dalle diseguaglianze

Hljincj[§1+€2+---+§n} <calit+celt.. .+ b < m?XCj[§1+f2+---+€n]

tenendo conto di (11.100) e del fatto che le componenti di vp hanno somma unitaria, segue
minc; < Ag < maxc; . (11.101)

j J
Analogamente, ragionando sull’autovettore sinistro (o considerando la matrice F7T), si

perviene a
minr; < Ao < maxr; . (11.102)
1 1
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e ESercIZIO 11.6.4 (i) La stima (11.98) dell’autovalore massimale puo essere raffinata:
max{minc;j, minr;} < Ao < min{maxc;, maxr;}
J ? J %

(ii) In una matrice non negativa risulta max; r; > min; ¢;.
f Suggerimento: si noti che (ri+r2+...+7,) <nmax;7; e che nminjc; < (c1+c2+...+¢n).

(iii) La diseguaglianza in (ii) vale per anche per matrici cui elementi hanno segno arbitrario?

e ESERCIZIO 11.6.5 Se A € Rixn, siar;(A), i =1,...,p la somma degli elementi della riga i-esima di
A e siponga a = max; 7;(A). Analogamente, se B € R}*™, sia rj(B), j =1,...,m la somma degli

elementi della riga j-esima di B e si ponga 8 = max; rj(B). Allora

(i) ogni riga del prodotto AB ha somma degli elementi non superiore a af.

§ Suggerimento: re(AB) =37, aribjk =37 ae; >0y bjk = 325 aeiri(B) < 3705 ayf < aff.

Se A e B sono quadrate, i.e. p =n = m, allora

(ii) se af < 1 allora AB e BA sono asintoticamente stabili;

(iii) se 8 <1 e a < 1, ogni matrice M che sia prodotto di v4 fattori eguali ad A e vp fattori eguali
a B ha somme di riga non superiori a «”4. Al divergere del numero dei fattori A la matrice M &
infinitesima.

11.7 M-matrici e matrici di Hurwitz-Metzler

Nella discussione sulla struttura dei sistemi positivi (discreti e continui) torna utile in-
trodurre e studiare alcune classi di matrici strettamente connesse alle non negative: le
Z-matrici, le M-matrici e le loro opposte (le matrici di Metzler e di Hurwitz-Metzler).

Definizione 11.7.1 [Z-MATRICI, MATRICI DI METZLER, M-MATRICI | Una matrice A €
R™ " si dice
i) una Z-matrice se gli elementi non diagonali sono non positivi, ovvero a;; < 0, Vi # j;

ii) una matrice di Metzler se i suoi elementi non diagonali sono non negativi (ossia se
A é lopposta di una Z-matrice);

iii) una M-matrice se é una Z-matrice ed & positiva'® la parte reale di tutti i suoi auto-
valori;

iv) una matrice di Hurwitz-Metzler se é una matrice di Metzler ed é negativa la parte
reale di tutti i suoi autovalori (ossia se A é I'opposta di una M-matrice)

Evidentemente, le Z-matrici di ordine n sono tutte e sole le matrici del tipo
A=X,—-F, FeRY" XxekR (11.103)

Poiché lo spettro di F' comprende un autovalore reale non negativo massimale \g ed &
contenuto nel cerchio dal piano complesso avente centro l'origine e raggio Ao, lo spettro
della Z-matrice A, che ¢ legato a quello di F' dalla relazione A(A) = A— A(F'), consta di un

151a, definizione di M-matrice adottata qui & pilt restrittiva di quella di Berman-Plemmons “Non negative
matrices in the mathematical sciences” (Academic Press, 1979). Nella definizione di B.P. la parte reale
degli autovalori di una M-matrice A deve essere non negativa e quindi si ammette che una M-matrice possa
essere singolare. La definizione 11.7.1 (iii) coincide con quella di K-matrice (o di M-matrice) introdotta in
Fiedler-Ptack “On matrices with non-positive off-diagonal elements and positive principal minors” (Czech
Math.J., vol 12 (1962), 382-400); se si adotta invece la definizione di B.P., le matrici qui considerate sono
le M-matrici non singolari.
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autovalore reale g = A — Ag a parte reale minima, e ogni altro autovalore di A appartiene
al cerchio con centro in \ e raggio Ag. Si noti che la matrice risolvente (A\I,, — F)~! di una
matrice non negativa F' ¢ I'inversa di una Z-matrice (quando A ¢ reale).

Analogamente, le matrici di Metzler sono quelle che possono essere scritte nella forma
A=F—X,, con F eRY" XeR. Lo spettro A(A) = A(F) — X consta allora di un
autovalore reale g = A\g— A a parte reale massima, e ogni altro autovalore di A appartiene
al cerchio con centro in —\ e raggio .

A

K\AO . A—Aom k A\ Ao — A
Nl N ./

A(F) AN, — F) A(F — \,,)
F>0 Z-matrice Metzler

Figura 11.7.1

Le M-matrici (e le matrici di Hurwitz-Metzler, loro opposte) sono state e sono tuttora
oggetto di un’intensa attivita di studio: esse costituiscono, direttamente o tramite altre
classi di matrici ad esse collegate, un fondamentale strumento per 'analisi di ampie classi
di sistemi in Economia, in Biologia, in Ecologia, etc. La proposizione 11.7.2 riunisce alcuni
importanti risultati sulle M-matrici, che saranno utilizzati nel seguito di questi Appunti. A
completamento, la proposizione successiva riporta ulteriori caratterizzazioni, ma ¢ lontana
dal fornire un quadro completo dei numerosi risultati reperibili in letteratura.

Proposizione 11.7.2 [CARATTERIZZAZIONI DELLE M-MATRICI| Sia A una Z-matrice di
ordine n. Si equivalgono i seguenti fatti:

0) A é una M-matrice, ovvero Re(A(A)) > 0;

i) [CONNESSIONE CON LE MATRICI POSITIVE| A ¢ esprimibile nella forma \I,, — F', con
Fe Rixn e con A > )y, dove \g denota ’autovalore massimale non negativo di F’;

ii) [COEFFICIENTI DEL POLINOMIO CARATTERISTICO] i coefficienti del polinomio carat-
teristico di —A sono tutti positivi'®, ovvero A_A(2) = 2" + ap_12" " +ap 22" +
cooF g, ay >0,V

iii) [POSITIVITA DELL'INVERSA] A ¢ non singolare e la sua inversa A~! ¢ una matrice
positiva;

iv) [A PUO MAPPARE IN R/ SOLTANTO VETTORI NON NEGATIVI|] per ogni vettore
x € R", la condizione Ax > 0 implica x > 0;

v) [A MAPPA INTERNAMENTE A R QUALCHE PUNTO INTERNO DI R'] esiste un
vettore p > 0 per cui risulta Ap > 0.

16 quindi i coefficienti del polinomio caratteristico per una matrice di Metzler-Hurwitz sono tutti positivi
e per una M-matrice sono di segno alterno.
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PrRovA Dimostreremo le implicazioni secondo lo schema seguente:

0) < i)
0) < ii);
i) = i) = dv) = i)
i) = )

0) < i) Poiché A & una Z-matrice, & esprimibile nella forma A = A\ — F con F := \[,— A
matrice non negativa. Se Ag, A1, ..., Ap—1 sono gli autovalori di F' e Ay > 0 ne & 'autovalore
di Perron, gli autovalori di A sono

A=Ay A= AL, e A= Ang (11.104)

e quello con parte reale minima € A — Ag. La condizione che abbiano tutti parte reale
positiva equivale allora a
A > Ap. (11.105)

0) < i) Se gli autovalori di A\l — F' hanno parte reale positiva, quelli di —A = F —
Al, hanno parte reale negativa e pertanto il polinomio caratteristico di —A, ha positivi
tutti i coefficienti!” perché prodotto di fattori polinomiali di primo e secondo grado con
coefficienti positivi.

Viceversa, denotiamo con g > 0 una costante non negativa per cui F := —A + ul sia
matrice positiva, con autovalore di Perron Ay > 0. Poiché i coefficienti del polinomio
caratteristico A_4(z) = 2" + ap_12"" 1+ ...+ aq2+ o sono tutti positivi, non puod essere
1< Ag. Altrimenti la matrice —A = F'— ul avrebbe qualche autovalore & positivo o nullo
che, risultando zero del polinomio caratteristico, soddisfa

A_a(6) =& +oma&l T+ +aafo+ap =0,
in contraddizione con la positivita di tutti i coefficienti ;. Allora deve essere > Ag, la
matrice —A = F' — pl ha soltanto autovalori a parte reale negativa e A ¢ una M-matrice.

i) = 4i1) Poiché in A = A\ — F tutti gli autovalori hanno parte reale positiva, A & non
singolare e, per il lemma 11.5.6, da (11.105) consegue la sviluppabilita di (A — F)~! in
serie di Neumann

AT =\ - F) 7 = Z Nl
i=0

nella quale tutti gli addendi sono non negativi. Pertanto la matrice A~! & positiva.

iii) = iv) Da Ax > 0, essendo positiva la matrice A~! risulta anche A=!(Ax) > 0 e
quindi x > 0.

iv) = i) Rappresentiamo la Z-matrice A nella forma A = A\ — F, con F' > 0, e sia vo > 0
I’autovettore di Perron di F'. Risulta allora

A(=vo) = (M = F)(=vo) = (A = o) (vo),

incompatibile con la (iv) se A < Ag

e la matrice opposta, A, ha un polinomio caratteristico con coefficienti di segno alterno



492 CAPITOLO 11. SISTEMI DISCRETI POSITIVI

iii) = v) Sia x > 0 un arbitrario vettore strettamente positivo. Allora p := A~!x
¢ strettamente positivo, perché A~! ¢ positiva in ogni sua riga, e soddisfa ovviamente
Ap > 0.

v) = i) Dalla condizione Ap = (A — F)p := x > 0 segue, premoltiplicando per un
autovettore sinistro wg > 07 corrispondente all’autovalore di Perron Ao della matrice F,

wi (M — F)p = wix = (A= X)Wl p.
L’ultima uguaglianza implica A > Ao e pertanto la (i). [ |

Proposizione 11.7.3 * [ULTERIORI CARATTERIZZAZIONI DELLE M-MATRICI| Sia A una
Z-matrice di ordine n. Si equivalgono i seguenti fatti:

0) A é una M-matrice, ovvero Re(A(A)) > 0;

vi) [PRODOTTO PER MATRICI DIAGONALI E DOMINANZA| esiste una matrice diagonale
D = diag{d;,ds,...,d,} cond; > 0, i = 1,2,...,n, tale che la matrice A := AD
ha diagonale principale positiva e strettamente dominante per righe, ovvero a;; >

> i |l

vii) [DOMINANZA E SIMILARITA CON MATRICI DIAGONALI] esiste una matrice diagonale
D = diag{dy,do,...,d,} con d; > 0, i = 1,2,...,n, tale che la matrice AS) :=
D~'AD ha diagonale principale positiva ed é strettamente dominante per righe;

viii) [A B UNA P-MATRICE!®] sono positivi i minori principali “annidati” di A, ovvero

ailp a2

> 0, det [ as1 a9 asz | > 0, ...,detA>0 (11.106)
az; a2

] all a2 a3
a31 as2 a3z

ail > 0, det [
e quindi tutti I minori principali di A;
ix) [FATTORIZZAZIONE LU]| A fattorizza nel prodotto di due Z-matrici triangolari
A=LU,

dove L é triangolare inferiore con diagonale positiva e U é triangolare superiore con
diagonale positiva;

x) [EQUAZIONE DI LYAPUNOV (TEMPO CONTINUO)]| esiste una matrice diagonale

D:diag{dl,cb,...,cfn}, Czl,CZQ,...,dn>0,

tale che DA + AT D ¢ definita positiva.

18Una matrice quadrata & una P-matrice se sono positivi tutti i suoi minori principali annidati, & una
matrice definita positiva se & una P-matrice simmetrica.
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ProvA Tenuto conto della proposizione precedente, dimostreremo le implicazioni secondo

lo schema:
w) = wi) = wii) = 0)
0 = =z = 0
i) = wik) = iz) = i)
v) = vi) Sed=1[d; dy ... dy]’ > 0 verifica la condizione Ad > 0, sia D la matrice

diagonale con elementi diagonali d; e sia A = AD. Abbiamo allora
0< Ad = AD1 = Al (11.107)

e poiché gli elementi fuori diagonale @;; = a;jd; di A sono non positivi, come quelli della
Z-matrice A, da (11.107) segue

@i > — Y G =Y |ag| >0, i=1,2,...,n. (11.108)
J#i J#i
Rimane cosi provata la stretta positivita degli elementi diagonali di A (e di A) e la domi-
nanza diagonale per righe della matrice AD.

vi) = vii) Se gli elementi diagonali di A := AD sono strettamente positivi e soddisfano le
condizioni di dominanza per righe (11.108), lo stesso puo dirsi degli elementi della matrice

A®) .— p=1AD = D 1A,

Infatti la riga i-esima di A®) g ottiene moltiplicando la riga i-esima di A per la costante
positiva d;l e quindi

S —1- —1- 1= S .
agi):di 1aii>—2di 1aij:Z|di 1aij]:Z|a§j)\, i=1,2,...,n. (11.109)
J# J#i J#i
vii) = 0) Attesa la (11.109), per ogni indice 7 fra 1 ed n il cerchio 7; con centro nel punto
reale agf = a;; > 0 eraggior; = > ki |a§f)| ¢ contenuto nel semipiano destro aperto
Re(z) > 0 del piano complesso. Per il teorema di Gershgorin (proposizione 2.11.2), gli

autovalori di A®®) sono contenuti nella regione Ui 17, quindi nel semipiano destro aperto
di C, e lo stesso pud dirsi degli autovalori di A, che & matrice simile ad A5,

0) = x) Supponiamo che A sia una M-matrice. Per quanto abbiamo dimostrato finora,
vii), 0), vi) sono proprietd equivalenti, quindi esiste una matrice diagonale D con diago-
nale positiva, tale per cui D~'AD ha diagonale positiva ed ¢ dominante per righe. Inoltre
sono M-matrici AT e DAT D!, in quanto Z-matrici aventi il medesimo spettro di A.
D’altra parte, DAT D!, trasposta di D' AD, ha pure essa diagonale positiva ed & stret-
tamente dominante per colonne. Per la proprieta vi), applicata alla M-matrice DAT D1,
esiste una matrice diagonale V', con diagonale positiva, tale per cui

(DATD™ YV = (DAT DY) diag{vy, v, ..., v,} (11.110)

ha diagonale positiva, & strettamente dominante per righe, ma lo ¢ anche per colonne.
Infatti la 4-esima colonna di (DATD~1)V ¢ la i-esima colonna di (DAT D~!) moltiplicata
per il numero positivo v;. Allora la matrice simmetrica

DATD'V +VDAD (11.111)
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ha diagonale positiva ed ¢ strettamente dominante (per righe e per colonne), quindi per
il teorema di Gershgorin i suoi autovalori hanno parte reale positiva e (11.111) ¢ definita
positiva. Ma allora ¢ definita positiva la matrice

DYDATD™'V + VD 'ADID™' = AT[D'WD |+ [D"'VD A= ATD 4+ DA
(11.112)
in cui D = D'V D! & matrice diagonale con elementi diagonali positivi.
x) = 0) Poiché (~AT)D + D(—A) & definita negativa e D & definita positiva, possiamo
concludere, applicando la teoria dell’equazione di Lyapunov, che gli autovalori di —A
hanno parte reale negativa. Quindi A & una Z-matrice i cui autovalori hanno parte reale
positiva, ovvero ¢ una M-matrice.

i) = wviii) Sia A=A — F con A > \g = p(F).

Da det(A) = det(Al,, — F) = Ap(z)|.,=x, tenuto conto che la funzione polinomiale Ap :
R - R:z+ Ap(z) tende a +00 quando z — +0o e non ha zeri'® sul semiasse (g, +00),
nel punto A > )\ essa assume valore positivo, ovvero ¢ positivo det(A) > 0, il minore di
ordine n della matrice A.

Per ogni altro minore di ordine m < n di A, si consideri la matrice

Fiq 0
0  diag{fm+im+1s---sfon} |’

dove Fi; e la sottomatrice di F' formata dalle prime m righe e dalle prime m colonne.
L’elemento in posizione (i,j) di ® coincide con quello nella medesima posizione di F' se
1,7 < m oppure se ¢ = j, mentre & nullo negli altri casi. Quindi

- la matrice ® ¢ non negativa,

- il suo raggio spettrale non eccede Ao (autovalore dominante di F'), risultando ® < F,

- gli elementi diagonali di ® sono piu piccoli di A (cfr. Esercizio 11.6.2).

Poiché B & una Z-matrice che soddisfa la proprieta ii), per il ragionamento appena svolto
si ha det(B) > 0 e da

B=M, - &=\, — (11.113)

det(B) = det(AMm — F11)(A = fmg1m+1) - (A = fan) >0

segue
ail a2 . A1m,

det(AL, — Fip) =det | “21 922 -0 @2m) o (11.114)
Aml1 Am2 ... Gmm

Quindi sono positivi tutti i minori principali “annidati”.

Si noti infine che per ogni matrice di permutazione II anche IITAIl = A — IITFII ¢
una Z-matrice soddisfacente la (i) e che ogni minore principale di A & minore principale
“annidato” (e quindi positivo) di TI7 AII, per un’opportuna scelta di II.

viii) = ix) Osserviamo in via preliminare che una Z-matrice triangolare T' (inferiore o
superiore) con diagonale positiva ¢ una M-matrice e che per 'equivalenza i) < ii) < i)
essa ¢ sempre dotata di inversa positiva (rispettivamente triangolare inferiore o superiore).

19)\g & Iautovalore dominante della matrice non negativa F
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Procediamo ora per induzione sulla dimensione n delle matrici.

Nel caso n = 1 I'implicazione (viii) = (ix) ¢ banalmente vera.

Assumiamo percio che essa valga per tutte le Z-matrici di ordine n — 1 che sono P-matrici,
e proviamo che, se A, ¢ una Z-matrice di ordine n e tutti i suoi minori principali annidati
sono positivi, allora essa fattorizza nel prodotto L, U, di Z-matrici triangolari, dove L,, e
U, sono rispettivamente triangolare inferiore e triangolare superiore con diagonale positiva.
Partizionando a blocchi A,,, abbiamo

. (11.115)

[t 2

—c G
in cui A,_1 € una Z-matrice di ordine n — 1, mentre b e ¢ sono vettori aventi tutte le
componenti non negative. Risultando positivi i minori principali annidati di A,, e quindi
di A,,_1, per ipotesi induttiva vale la fattorizzazione A,,_1 = L,,_1Up,_1, con L,,_1 e U,_1
Z-matrici, triangolare inferiore la prima e triangolare superiore la seconda, entrambe con
diagonale positiva.

Dalla relazione

det(A,)/det(A,—1) = det(an, — CTA;ilb) >0 (11.116)
segue che le matrici triangolari
Ln—l 0 Un—l _L;ilb
L, = , U, = , (11.117)
—cTUn__l1 1 0 Ann — CTA;ilb

hanno positive le diagonali principali e soddisfano la condizione A,, = L,U,. Poiche L,
e Up—1 sono dotate di inversa positiva per 'osservazione preliminare, attesi i segni degli
elementi di b e ¢ possiamo concludere che sia L,, che U, sono Z-matrici.

iz) = 4ii) L ed U sono Z-matrici triangolari con diagonale positiva, quindi sono M-matrici,
dotate ciascuna di un’inversa positiva. Allora

At =xu)yt=v"L!
implica (I’esistenza) e la positivita di A~ [ ]

e ESERCIZIO 11.7.1 Si consideri la Z-matrice

l11 0 ... 0 fii 0 ... O 0 0 ... 0
—la1 las 0 0 laa ... 0 —l21 0 ... 0

h
Il
I

_l’_

—£n1 —ZnQ e Enn 0 O e énn _gnl _€n2 e 0
diag{én, fgz, . ,Enn} - P

conty; >0, i=1,...,ne P>0. Posto P = diag{l;', 55, . . . £nn } P, si verifichi che

L' =[I,+P+...+P" "diag{¢i' , lan ..., Lun}

e ESERCIZIO 11.7.2 [ULTERIORI CARATTERIZZAZIONI DELLE M-MATRICI] Per una Z-matrice A si
equivalgono i seguenti fatti

0) A & una M-matrice;
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v bis) esiste un vettore riga w’ > 0 per cui risulta w? A > 07

xi) [D-STABILITA DI —A] la matrice AD ha autovalori a parte reale positiva per ogni matrice
diagonale D avente positivi tutti gli elementi diagonali (ovvero —AD ha autovalori a parte
reale negativa per ogni D, proprieta che va sotto il nome di “D-stabilita” della matrice —A)
xii) ogni sottomatrice principale di A ha spettro contenuto nel semipiano Re(s) > 0 (e quindi &
una M-matrice)
# Suggerimento: 0) = xi) Per ogni D diagonale a diagonale positiva AD é una Z-matrice. Essendo
invertibile con inversa positiva la matrice A (Proposizione 11.7.2.i), anche (AD)™* = D™1A™!
esiste ed & positiva. Quindi AD é una M-matrice. Per zii) si ricorra al punto viii) della proposizione
11.7.2.

e ESERCIZIO 11.7.3 [M-MATRICI SIMMETRICHE| Una Z-matrice simmetrica A ¢ una M-matrice se e
solo se A= UTU, dove U & una Z-matrice triangolare superiore con diagonale positiva.

# Suggerimento. Si proceda per induzione sun come al punto (iz) della proposizione 11.7.2, ponendo

Un—1 —(U)'b

0 v Qnn — bTAT_Lilb

e ESERCIZIO 11.7.4 [ANCORA SULLA CARATTERIZZAZIONE DELLE M-MATRICI] Una Z-matrice A di
dimensione n X n & una M-matrice se e solo se

0 {AH b

_bT ann:| ; A'nfl = Ug—lUv Un =

xiii) per ogni vettore d > 0, I’equazione Ax = d ammette una soluzione x > 0;
xiv) lequazione Ax = 1,, ammette una soluzione x > 0.

# Suggerimento (ziii) Se A ¢ una M-matrice, per il punto (iii) della proposizione 11.7.2 esiste A™!
ed ¢ positiva. Quindi Uequazione ¢é risolta dal vettore strettamente positivo A~*d. Viceversa, se
per ogni d > 0 esiste una soluzione x > 0, lo spazio immagine di A é R™, quindi A é non
singolare. Se la sua inversa contenesse un elemento [A™');; < 0, al vettore strettamente positivo
d =€l, +ej, € >0, corrisponderebbe la soluzione x = A7 el, + Ailej che per e sufficientemente
piccolo ha la componente i-esima negativa.

(ztv) consegue direttamente da (v) della proposizione 11.7.2 e dal punto (ziii) di questo esercizio.

Il seguente corollario riporta alcune proprieta delle M-matrici, che conseguono dalle carat-
terizzazioni riportate nella proposizione 11.7.2 :

Corollario 11.7.4 [SPETTRO DELLE M-MATRICI| Se A é una M-matrice,

a) lautovalore puo(A) di A a parte reale minima ¢ un numero reale positivo;

b) se B é una Z-matrice e B > A, allora anche B é una M-matrice e il suo autovalore
a parte reale minima o (B) soddisfa la diseguaglianza po(B) > po(A);

C) ,uggaii,izl,Q,...,n.

PRroOvA a) Ovvia conseguenza della definizione di M-matrice.

b) Poiché B & una Z-matrice, per A > 0 e sufficientemente grande \I,, — B ¢ una matrice
positiva e si ha
Vi=M,—A > M,—B:=U2>0. (11.118)

Se )\(()V) > 0 e lautovalore massimale di V, deve essere A\ > )\(()V) per il punto (i) della

proposizione 11.7.2, e converge la serie di C.Neumann

-1 __ -1 __ '
At =\, - V) _ZW
=0
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Dalla diseguaglianza (11.118) si ha allora la convergenza di

> ;fﬂ =\, -U)'=B"! (11.119)
1=0

da cui segue che esiste ed & positiva B~!. Per il punto (iii) della proposizione 11.7.2, B ¢
una M-matrice.

Per provare che 'autovalore reale minimale o(B) non puo essere inferiore a jo(A), con-
sideriamo un arbitrario numero reale r soddisfacente r < ug(A).

Da Re A(A—rl,) > 0 segue che A —rI, & una M-matrice. Poiché B —rI,, ¢, come B, una
Z-matrice, e B —rl, > A —rl,, per quanto abbiamo appena dimostrato anche B —rI,, &
una M-matrice, ovvero

0 < Re A(B—rl,) = Re A(B)) —r, (11.120)

da cui segue Re A(B)) > r. Attesa larbitrarieta di r < pg(A), si conclude che Re A(B)) >
to(A) e quindi po(B) = po(A).

c) Si definisca B = diag{ai1,a92,...,an,}. Chiaramente B ¢ una Z-matrice che soddisfa
B > A, quindi per il punto b) & una M-matrice, e vale la

min  a; = po(B) > po(A). [ ] (11.121)

i=1,2,...n

e ESERCIZIO 11.7.5 [M-MATRICI DEL SECONDO ORDINE| Affinché una Z-matrice

a a
A= | M2 015 <0, an <0
a21 a22

sia una M-matrice & necessario e sufficiente che sia soddisfatta una delle seguenti condizioni (fra
loro equivalenti)

i) a11 >0 e aiia2 > a1z2a91;
ii) det(4) >0 e tr(A4) >0;

iii) in Aa(s) =s>+ais+ao siha oy <0e ag > 0.

11.8 Riferimenti bibliografici

La letteratura sulle matrici non negative ¢ molto ricca. La monografia
(1) M. Minc “Nonnegative matrices” Wiley, 1988

e di lettura piuttosto gradevole. Contiene numerosi argomenti che non sono stati neppure
accennati in questi Appunti (matrici doppiamente stocastiche, problemi inversi relativi agli
autovalori, congettura di van der Waerden, etc.), mentre per altri presenta una trattazione
assai piu completa.

(2) R.B.Bapat, T.E.Raghavan “Nonnegative matrices and applications’ volume 64 della
“Encyclopedia of Mathematics and its Applications”, Cambridge Univ. Press, 1997
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evidenzia i forti legami della teoria delle matrici non negative con la teoria dei giochi, la
combinatoria, le programmazione matematica, ’economia e la statistica.
La monografia

(3) A.Berman, R.J.Plemmons “Nonnegative matrices in the mathematical sciences’,
Academic Press, 1979

¢ stata aggiornata nel 1993 e copre uno spettro di argomenti molto vasto, che comprende
anche le catene di Markov, le M-matrici, la teoria della positivitd inversa, etc. E di lettura
alquanto impegnativa.

Per un’introduzione alla teoria dei grafi e alle proprieta combinatorie delle matrici non
negative, il libro di H.Minc puo essere utilmente integrato da

(4) R.A.Brualdi, H.J.Ryser “Combinatorial matriz theory” volume 39 della “Encyclope-
dia of Mathematics and its Applications”, Cambridge Univ. Press, 1991

Per il teorema di Coxson-Larson si rinvia all’articolo originale

(5) P.G.Coxson, L.Larson, H.Schneider “Monomial patterns in the sequence AFb? | Linear
Algebra and its Appl., vol.96, pp.89-101, 1987.

e per le M-matrici, oltre alla monografia di Berman Plemmons, molto illuminante &
'articolo (citato nella nota 15 del capitolo)

(6) Fiedler-Ptack On matrices with non-positive off-diagonal elements and positive prin-
cipal minors, Czech Math.J., vol 12, pp. 382-400, 1962.

Per una prima introduzione ai sistemi dinamici lineari positivi si veda il sesto capitolo
della piu volte citata monografia

(7) D.G.Luenberger “Introduction to dynamic systems, Wiley, 1979

mentre una trattazione piu approfondita, con numerosi esempi di carattere applicativo, &
offerta da

(8) L.Farina, S.Rinaldi “Positive linear systems: theory and applications” Wiley, 2000.

La bibliografia sui sistemi positivi sara integrata alla fine del capitolo 12 .



